Patents by Inventor James P. Oberhauser

James P. Oberhauser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10278844
    Abstract: Methods are disclosed including thermally processing a scaffold to increase the radial strength of the scaffold when the scaffold is deployed from a crimped state to a deployed state such as a nominal deployment diameter. The thermal processing may further maintain or increase the expansion capability of the scaffold when expanded beyond the nominal diameter.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: May 7, 2019
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Rommel Lumauig, Stephen D. Pacetti, Ni Ding, Joel Harrington, Xiao Ma, James P. Oberhauser, Jill McCoy, Chad J. Abunassar, Senthil Eswaran, Diem Ta
  • Patent number: 10166129
    Abstract: Methods of treating a diseased blood vessel exhibiting stenosis with a bioabsorbable stent are disclosed. The implanted stent supports the section of the vessel at an increased diameter for a period of time to allow the vessel to heal. The stent loses radial strength sufficient to support the section of the vessel in less than 6 months after implantation, loses mechanical integrity, and then erodes away from the section. The biodegradable stent results in changes in properties of plaque with time as the stent degrades. The time-dependent properties include the luminal area of the plaque and plaque geometric morphology parameters.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: January 1, 2019
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Richard Rapoza, Yunbing Wang, James P. Oberhauser, Syed Hossainy
  • Patent number: 10022906
    Abstract: A polymer tube is processed using a solid phase process for improving mechanical characteristics of the tube, including radial strength and stiffness. The tube is made into a scaffold possessing improved mechanical and use characteristics, such as a reduced crimped profile and improved deliverability.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: July 17, 2018
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Manish B. Gada, Bobby B. Speed, James P. Oberhauser
  • Publication number: 20180008438
    Abstract: Methods are disclosed including thermally processing a scaffold to increase the radial strength of the scaffold when the scaffold is deployed from a crimped state to a deployed state such as a nominal deployment diameter. The thermal processing may further maintain or increase the expansion capability of the scaffold when expanded beyond the nominal diameter.
    Type: Application
    Filed: August 28, 2017
    Publication date: January 11, 2018
    Inventors: Rommel Lumauig, Stephen D. Pacetti, Ni Ding, Joel Harrington, Xiao Ma, James P. Oberhauser, Jill McCoy, Chad J. Abunassar, Senthil Eswaran, Diem Ta
  • Publication number: 20170319363
    Abstract: Bioresorbable polymer vascular scaffolds made of combinations of polylactide and polycaprolactone having a high molecular weight polymer, thin struts in a selected range and sufficient radial strength to support a vessel upon deployment. The scaffolds have degradation behavior of molecular weight, radial strength, and mass that are conducive to healing of a vessel including providing patency to a vessel, reduction of radial strength, breaking up, and resorbing to allow return of the vessel to a natural state.
    Type: Application
    Filed: July 27, 2017
    Publication date: November 9, 2017
    Inventors: Xiao Ma, Mary Beth Kossuth, James P. Oberhauser, Stephen D. Pacetti, Manish Gada
  • Patent number: 9795497
    Abstract: Methods are disclosed including thermally processing a scaffold to increase the radial strength of the scaffold when the scaffold is deployed from a crimped state to a deployed state such as a nominal deployment diameter. The thermal processing may further maintain or increase the expansion capability of the scaffold when expanded beyond the nominal diameter.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: October 24, 2017
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Rommel Lumauig, Stephen D. Pacetti, Ni Ding, Joel Harrington, Xiao Ma, James P. Oberhauser, Jill McCoy, Chad J. Abunassar, Senthil Eswaran, Diem Ta
  • Patent number: 9757258
    Abstract: Methods are disclosed including thermally processing a scaffold to increase the radial strength of the scaffold when the scaffold is deployed from a crimped state to a deployed state such as a nominal deployment diameter. The thermal processing may further maintain or increase the expansion capability of the scaffold when expanded beyond the nominal diameter.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: September 12, 2017
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Rommel Lumauig, Stephen D. Pacetti, Ni Ding, Joel Harrington, Xiao Ma, James P. Oberhauser, Jill McCoy, Chad J. Abunassar, Senthil Eswaran, Diem Ta
  • Patent number: 9750622
    Abstract: Bioresorbable polymer vascular scaffolds made of combinations of polylactide and polycaprolactone having a high molecular weight polymer, thin struts in a selected range and sufficient radial strength to support a vessel upon deployment. The scaffolds have degradation behavior of molecular weight, radial strength, and mass that are conducive to healing of a vessel including providing patency to a vessel, reduction of radial strength, breaking up, and resorbing to allow return of the vessel to a natural state.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: September 5, 2017
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Xiao Ma, Mary Beth Kossuth, James P. Oberhauser, Stephen D. Pacetti, Manish Gada
  • Publication number: 20170112646
    Abstract: Methods of treating a diseased blood vessel exhibiting stenosis with a bioabsorable stent are disclosed. The implanted stent supports the section of the vessel at an increased diameter for a period of time to allow the vessel to heal. The stent loses radial strength sufficient to support the section of the vessel in less than 6 months after implantation, loses mechanical integrity, and then erodes away from the section. The biodegradable stent results in changes in properties of plaque with time as the stent degrades. The time-dependent properties include the luminal area of the plaque and plaque geometric morphology parameters.
    Type: Application
    Filed: January 5, 2017
    Publication date: April 27, 2017
    Inventors: Richard Rapoza, Yunbing Wang, James P. Oberhauser, Syed F.A. Hossainy
  • Patent number: 9572692
    Abstract: Methods of treating a diseased blood vessel exhibiting stenosis with a bioabsorable stent are disclosed. The implanted stent supports the section of the vessel at an increased diameter for a period of time to allow the vessel to heal. The stent loses radial strength sufficient to support the section of the vessel in less than 6 months after implantation, loses mechanical integrity, and then erodes away from the section. The biodegradable stent results in changes in properties of plaque with time as the stent degrades. The time-dependent properties include the luminal area of the plaque and plaque geometric morphology parameters.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: February 21, 2017
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Richard Rapoza, Yunbing Wang, James P. Oberhauser, Syed F. A. Hossainy
  • Publication number: 20160375179
    Abstract: Methods of fabricating a stent are disclosed including forming a primer layer on a surface of the scaffold including a first polylactide polymer. The primer layer includes a second polylactide polymer and is free of a therapeutic agent. The scaffold with the primer layer is thermally treated to condition the scaffold. A therapeutic layer is formed over the primer layer and the therapeutic layer includes the second polylactide polymer and a drug. The scaffold is crimped and the primer layer improves adhesion of the therapeutic layer to the scaffold and reduces or prevents damage to the therapeutic layer during crimping.
    Type: Application
    Filed: June 25, 2015
    Publication date: December 29, 2016
    Inventors: Jose R. Gamez, Karen Wang, Mary Beth Kossuth, Joel Harrington, James P. Oberhauser
  • Publication number: 20160081827
    Abstract: Methods are disclosed including thermally processing a scaffold to increase the radial strength of the scaffold when the scaffold is deployed from a crimped state to a deployed state such as a nominal deployment diameter. The thermal processing may further maintain or increase the expansion capability of the scaffold when expanded beyond the nominal diameter.
    Type: Application
    Filed: September 18, 2015
    Publication date: March 24, 2016
    Inventors: Rommel Lumauig, Stephen D. Pacetti, Ni Ding, Joel Harrington, Xiao Ma, James P. Oberhauser, Jill McCoy, Chad J. Abunassar, Senthil Eswaran, Diem Ta
  • Patent number: 9278477
    Abstract: Methods for fabricating a polymeric stent with improved fracture toughness including radial expansion of a polymer tube and fabricating a stent from the expanded tube are disclosed. The polymer tube is disposed within a mold and may be heated with radiation. The heated tube radially expands within the mold.
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: March 8, 2016
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Lothar W. Kleiner, James P. Oberhauser, Thierry Glauser, David Wrolstad, Yunbing Wang
  • Publication number: 20160031150
    Abstract: A polymer tube is processed using a solid phase process for improving mechanical characteristics of the tube, including radial strength and stiffness. The tube is made into a scaffold possessing improved mechanical and use characteristics, such as a reduced crimped profile and improved deliverability.
    Type: Application
    Filed: July 27, 2015
    Publication date: February 4, 2016
    Inventors: Manish B. Gada, Bobby B. Speed, James P. Oberhauser
  • Publication number: 20150359648
    Abstract: Bioresorbable polymer vascular scaffolds made of combinations of polylactide and polycaprolactone having a high molecular weight polymer, thin struts in a selected range and sufficient radial strength to support a vessel upon deployment. The scaffolds have degradation behavior of molecular weight, radial strength, and mass that are conducive to healing of a vessel including providing patency to a vessel, reduction of radial strength, breaking up, and resorbing to allow return of the vessel to a natural state.
    Type: Application
    Filed: June 17, 2014
    Publication date: December 17, 2015
    Inventors: Xiao Ma, Mary Beth Kossuth, James P. Oberhauser, Stephen D. Pacetti, Manish Gada
  • Publication number: 20150313735
    Abstract: Methods of treating a diseased blood vessel exhibiting stenosis with a bioabsorbable stent are disclosed. The implanted stent supports the section of the vessel at an increased diameter for a period of time to allow the vessel to heal. The stent loses radial strength sufficient to support the section of the vessel in less than 6 months after implantation, loses mechanical integrity, and then erodes away from the section. The biodegradable stent results in changes in properties of plaque with time as the stent degrades. The time-dependent properties include the luminal area of the plaque and plaque geometric morphology parameters.
    Type: Application
    Filed: December 23, 2014
    Publication date: November 5, 2015
    Inventors: Richard Rapoza, Yunbing Wang, James P. Oberhauser, Syed Hossainy
  • Publication number: 20140374963
    Abstract: Methods for fabricating a polymeric stent with improved fracture toughness including radial expansion of a polymer tube and fabricating a stent from the expanded tube are disclosed. The polymer tube is disposed within a mold and may be heated with radiation. The heated tube radially expands within the mold.
    Type: Application
    Filed: September 8, 2014
    Publication date: December 25, 2014
    Inventors: Lothar W. Kleiner, James P. Oberhauser, Thierry Glauser, David Wrolstad, Yunbing Wang
  • Patent number: 8841412
    Abstract: Methods and systems for controlling the moisture content of biodegradable and bioresorbable polymer resin during extrusion above a lower limit that allows for plasticization of the polymer resin melt and below an upper limit to reduce or prevent molecular weight loss are disclosed. Methods are further disclosed involving plasticization of a polymer resin for feeding into an extruder with carbon dioxide and freon.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: September 23, 2014
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Bethany Steichen, Stephen D. Pacetti, Manish Gada, Thierry Glauser, Lothar W. Kleiner, Yunbing Wang, James P. Oberhauser, Ni Ding
  • Patent number: 8828305
    Abstract: Methods for fabricating a polymeric stent with improved fracture toughness including radial expansion of a polymer tube and fabricating a stent from the expanded tube are disclosed. The polymer tube is disposed within a mold and may be heated with radiation. The heated tube radially expands within the mold.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: September 9, 2014
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Lothar W. Kleiner, James P. Oberhauser, Thierry Glauser, David K. Wrolstad, Yunbing Wang
  • Publication number: 20130041129
    Abstract: Methods and systems for controlling the moisture content of biodegradable and bioresorbable polymer resin during extrusion above a lower limit that allows for plasticization of the polymer resin melt and below an upper limit to reduce or prevent molecular weight loss are disclosed. Methods are further disclosed involving plasticization of a polymer resin for feeding into an extruder with carbon dioxide and freon.
    Type: Application
    Filed: August 11, 2011
    Publication date: February 14, 2013
    Applicant: Abbott Cardiovascular Systems Inc.
    Inventors: Bethany Steichen, Stephen D. Pacetti, Manish Gada, Thierry Glauser, Lothar W. Kleiner, Yunbing Wang, James P. Oberhauser, Ni Ding