Patents by Inventor James R. Adleman

James R. Adleman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10381506
    Abstract: An optoelectronic device is provided that includes a doped substrate, a tunneling barrier, a direct bandgap two dimensional semiconductor material, a hot electron emitter, a gate electrode, and a voltage bias. The hot electron emitter injects hot electrons from the underlying substrate into the conduction band of the direct bandgap two dimensional semiconductor material via quantum tunneling. The gate electrode is operable to provide the voltage bias in a direction normal to the X-Y plane of the direct bandgap two dimensional semiconductor material so as to generate an electric field perpendicular to the direct bandgap two dimensional semiconductor material. The voltage bias provided by the gate is operable to change an optical bandgap of the direct bandgap two dimensional semiconductor material continuously from the visible to the mid-infrared spectral regime via an electric dipole layer enhanced Giant Stark Effect for electrically-tunable hot electron luminescence applications.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: August 13, 2019
    Assignee: United States of America as represented by the Secretary of the Navy
    Inventors: Carlos M. Torres, Jr., James R. Adleman, Ryan P. Lu, Ayax D. Ramirez
  • Patent number: 10121932
    Abstract: A device includes a substrate with a tunnel barrier disposed on active region defined on the substrate, a monolayer of graphene disposed on the tunnel barrier, a dielectric material disposed on the graphene, and an electrode disposed over a region of the dielectric material. A first voltage is applied across the electrode and the graphene to adjust a Fermi level within the graphene to a Fermi level position within the valence band of the graphene based upon a predetermined emission wavelength. A current is injected into the graphene's conduction band to cause the graphene to emit a broadband hot electron luminescence (HEL) spectrum of photons peaked at the predetermined emission wavelength. The device may be configured as a vertical-tunneling light-emitting hot-electron transistor. The broadband HEL photon emission spectrum emanating from the graphene may be voltage-tunable within the electromagnetic spectrum from UV to THz.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: November 6, 2018
    Assignee: THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE NAVY
    Inventors: Carlos M. Torres, Jr., James R. Adleman, Ryan P. Lu, Kang L. Wang
  • Patent number: 9287993
    Abstract: An RF channelizer comprising: a master laser for generating a reference beam; a splitter for splitting the reference beam into first and second beams; first and second modulator modules for converting the first and second beams into first and second modulated beams; first and second seed tone generators for deriving first and second seed tones; first and second parametric mixers for converting the first and second seed tones into first and second combs; a signal modulator for modulating a received RF signal onto the first comb; first and second optical filters for separating the first and second combs into pluralities of first and second filtered beams with center frequencies corresponding to the second comb lines; and a coherent detection array for selecting, combining, and detecting corresponding pairs from first and second filtered beams providing at the output a contiguous bank of channelized signals covering the bandwidth of the RF signal.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: March 15, 2016
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: James R. Adleman, Christopher K. Huynh, Everett William Jacobs, Sanja Zlatanovic, Andreas O. J. Wiberg, Stojan Radic
  • Patent number: 9091806
    Abstract: An integrated circuit includes a holographic recording material substantially filling a cavity in a semiconductor layer. During operation of the integrated circuit, a holographic pattern in the holographic recording is reconstructed and used to diffract an optical signal propagating in a plane of an optical waveguide, which is defined in the semiconductor layer out of the plane through the cavity. In this way, the holographic recording material may be used to couple the optical signal to an optical fiber or another integrated circuit.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: July 28, 2015
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Xuezhe Zheng, Ashok V. Krishnamoorthy, Kannan Raj, James R. Adleman
  • Patent number: 8731350
    Abstract: A method for forming planar-waveguide Bragg grating in a curved waveguide comprises: forming a long chirped planar-waveguide Bragg grating in an Archimedes' spiral such that a long length of the waveguide can fit in a small chip area where the grating is formed in the curved waveguide; using periodic width modulation to form the planar-waveguide Bragg grating on the curved waveguide, and where the formation of the periodic width modulation occurs during the etching of the waveguide core; using rectangular width modulation to create Bragg gratings with a higher order than 1st order to allow a larger grating period and larger modulation depth, using waveguide width tapering while keeping the width modulation period constant to introduce chirp to the planar-waveguide Bragg grating where the index of refraction is a function of waveguide width, by applying a specific width tapering to create a desired arbitrary chirp profile.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: May 20, 2014
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Chunyan Lin, Everett W. Jacobs, James R. Adleman, John Scott Rodgers
  • Patent number: 8611759
    Abstract: An optical domain spectrum analyzer/channelizer employs multicasting of an analog signal onto a wavelength division multiplexing grid, followed by spectral slicing using a periodic optical domain filter. This technique allows for a large number of high resolution channels. Wideband, 100% duty cycle, spectrum analysis or channelization is made possible permitting continuous time wideband spectral monitoring. The instantaneous bandwidth of the spectrum analyzer/channelizer is equal to the full radio frequency bandwidth of the analyzer/channelizer.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: December 17, 2013
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Joshua M. Kvavle, James R Adleman, Christopher K. Huynh, Camille-Sophie Bres, Sanja Zlatanovic, Andreas Olof Johan Wiberg, Ping Piu Kuo, Evgeny Myslivets, Everett William Jacobs, Stojan Radic
  • Publication number: 20130265624
    Abstract: An integrated circuit includes a holographic recording material substantially filling a cavity in a semiconductor layer. During operation of the integrated circuit, a holographic pattern in the holographic recording is reconstructed and used to diffract an optical signal propagating in a plane of an optical waveguide, which is defined in the semiconductor layer out of the plane through the cavity. In this way, the holographic recording material may be used to couple the optical signal to an optical fiber or another integrated circuit.
    Type: Application
    Filed: April 5, 2012
    Publication date: October 10, 2013
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Xuezhe Zheng, Ashok V. Krishnamoorthy, Kannan Raj, James R. Adleman