Patents by Inventor James Rogers

James Rogers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230072187
    Abstract: A printer includes: a body defining a media enclosure configured to receive a media supply; an indicator assembly supported by an outer wall of the body, the indicator assembly including a plurality of substantially contiguous illumination surfaces illuminated by respective ones of a set of lights supported within the body; a controller supported by the body, the controller configured to: (i) obtain an operational status of the printer, (ii) retrieve, from a mapping repository, a set of notification control parameters corresponding to the operational status, and (iii) control the set of lights according to the notification control parameters.
    Type: Application
    Filed: June 16, 2022
    Publication date: March 9, 2023
    Inventors: Morgan Hassan Malone, Edward Anthony Hackett, Raymond E. Maynard, Michael F. St.Germain, Michael C. Wondolowski, Daniel V. Carroll, Ozgur Ozserin, James Roger Morley-Smith, Hannah Marie Legg, Roger Edward Guinee, Ellen Thomas
  • Patent number: 11596749
    Abstract: The present disclosure relates to an aerosol delivery device filling system. The system includes multiple source containers each respectively including a differing aerosol precursor composition. The system further includes a mixing container configured to engage the source containers to receive and mix the aerosol precursor compositions to form a mixed aerosol precursor composition. An aerosol delivery device may engage the mixing container to receive at least a portion of the mixed aerosol precursor composition. A related method for customizing an aerosol precursor composition is also provided.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: March 7, 2023
    Assignee: RAI Strategic Holdings, Inc.
    Inventors: Andries Sebastian, Percy Phillips, James Rogers, Michael Davis
  • Patent number: 11590078
    Abstract: Disclosed herein are immunogenic compositions for producing immediate and sustained immunity to infectious viral and bacteriological pathogens. A univalent immunogenic composition is disclosed comprising an isolated antigen and a polynucleotide formulated into a nanoparticle or liposome. Furthermore, multivalent immunogenic compositions are disclosed comprising multiple univalent immunogenic compositions. Also disclosed, are methods of inducing protective or therapeutic immune responses in individuals comprising administering one or more univalent immunogenic compositions.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: February 28, 2023
    Inventors: Henry J. Smith, James Roger Smith
  • Publication number: 20230052071
    Abstract: Disclosed herein is an apparatus for processing a substrate using an inductively coupled plasma source. An inductively coupled plasma source utilizes a power source, a shield member, and a coil coupled to the power source. In certain embodiments, the coils are arranged with a horizontal spiral grouping and a vertical extending helical grouping. The shield member, according to certain embodiments, utilizes a grounding member to function as a Faraday shield. The embodiments herein reduce parasitic losses and instabilities in the plasma created by the inductively coupled plasma in the substrate processing system.
    Type: Application
    Filed: November 3, 2022
    Publication date: February 16, 2023
    Inventors: James ROGERS, John POULOSE
  • Publication number: 20230046517
    Abstract: The present invention provides process for producing a ballistic-resistant molded article, which molded article comprises: i) a plurality of layers of unidirectionally aligned polyolefin fibers, which layers are substantially absent a bonding matrix; and ii) a plurality of layers of adhesive, and which process comprises: a) providing a plurality of precursor sheets, each of said precursor sheets comprising i) at least one layer of unidirectionally aligned polyolefin fibers which layer is substantially absent a bonding matrix, and ii) at least one layer of adhesive; b) stacking said precursor sheets to form a stack, wherein the total amount of adhesive in the stack is from 5.0 to 12.0 wt. % based on the total weight of the stack; c) pressing the stack produced in step b) at a temperature of from 1 to 30° C. below the melting point of the polyolefin fibers and at a pressure of at least 8 MPa; and d) cooling the pressed stack produced in step c) to at least 50° C.
    Type: Application
    Filed: October 19, 2022
    Publication date: February 16, 2023
    Inventors: Johann VAN ELBURG, Matthew CRAIG, James ROGERS
  • Publication number: 20230030927
    Abstract: Embodiments of the disclosure provided herein include an apparatus and method for the plasma processing of a substrate in a processing chamber. More specifically, embodiments of this disclosure describe a biasing scheme that is configured to provide a radio frequency (RF) generated RF waveform from an RF generator to one or more electrodes within a processing chamber and a pulsed-voltage (PV) waveform delivered from one or more pulsed-voltage (PV) generators to the one or more electrodes within the processing chamber. The plasma process(es) disclosed herein can be used to control the shape of an ion energy distribution function (IEDF) and the interaction of the plasma with a surface of a substrate during plasma processing.
    Type: Application
    Filed: October 3, 2022
    Publication date: February 2, 2023
    Inventors: Leonid DORF, Rajinder DHINDSA, James ROGERS, Daniel Sang BYUN, Evgeny KAMENETSKIY, Yue GUO, Kartik RAMASWAMY, Valentin N. TODOROW, Olivier LUERE, Linying CUI
  • Patent number: 11564754
    Abstract: A system for aiding surgery on a patient is described including a display device and a storage device that stores an image of at least a portion of the anatomy of the patient, including one or more surgical navigation markers positioned on the patient, for display on the display device. An analyser is adapted to receive positional data of a probe based on positioning of the probe relative to the one or more markers on the patient. Based on the positional data, the analyser outputs correctional data to adjust an alignment of the image on the display device to match locations of said one or more markers.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: January 31, 2023
    Assignee: Spinal Developments Pty Ltd, A.T.F The Spinesr Unit Trust
    Inventors: Gregory James Roger, Davor Saravanja
  • Patent number: 11551916
    Abstract: Embodiments of substrate supports are provided herein. In some embodiments, a substrate support for use in a substrate processing chamber includes a ceramic plate having a first side configured to support a substrate and a second side opposite the first side, wherein the ceramic plate includes an electrode embedded in the ceramic plate; a ceramic ring disposed about the ceramic plate and having a first side and a second side opposite the first side, wherein the ceramic ring includes a chucking electrode and a heating element embedded in the ceramic ring; and a cooling plate coupled to the second side of the ceramic plate and the second side of the ceramic ring, wherein the cooling plate includes a radially inner portion, a radially outer portion, and a thermal break disposed therebetween.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: January 10, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jaeyong Cho, Rajinder Dhindsa, James Rogers, Anwar Husain
  • Publication number: 20220399184
    Abstract: Embodiments provided herein generally include apparatus, e.g., plasma processing systems and methods for the plasma processing of a substrate in a processing chamber. In some embodiments, aspects of the apparatus and methods are directed to improving process uniformity across the surface of the substrate, reducing defectivity on the surface of the substrate, or both. In some embodiments, the apparatus and methods provide for improved control over the uniformity of a plasma formed over the edge of a substrate and/or the distribution of ion energies at the surface of the substrate. The improved control over the plasma uniformity may be used in combination with substrate handling methods, e.g., de-chucking methods, to reduce particulate-related defectivity on the surface of the substrate. In some embodiments, the improved control over the plasma uniformity is used to preferentially clean accumulated processing byproducts from portions of the edge ring during an in-situ plasma chamber cleaning process.
    Type: Application
    Filed: November 29, 2021
    Publication date: December 15, 2022
    Inventors: Linying CUI, James ROGERS
  • Publication number: 20220399186
    Abstract: Embodiments provided herein include an apparatus and methods for the plasma processing of a substrate in a processing chamber. In some embodiments, aspects of the apparatus and methods are directed to reducing defectivity in features formed on the surface of the substrate, improving plasma etch rate, and increasing selectivity of etching material to mask and/or etching material to stop layer. In some embodiments, the apparatus and methods enable processes that can be used to prevent or reduce the effect of trapped charges, disposed within features formed on a substrate, on the etch rate and defect formation.
    Type: Application
    Filed: June 18, 2021
    Publication date: December 15, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Linying CUI, James ROGERS, Rajinder DHINDSA, Kartik RAMASWAMY
  • Publication number: 20220399194
    Abstract: Embodiments provided herein generally include plasma processing systems configured to preferentially clean desired surfaces of a substrate support assembly by manipulating one or more characteristics of an in-situ plasma and related methods. In one embodiment, a plasma processing method includes generating a plasma in a processing region defined by a chamber lid and a substrate support assembly, exposing an edge ring and a substrate supporting surface to the plasma, and establishing a pulsed voltage (PV) waveform at the edge control electrode.
    Type: Application
    Filed: December 27, 2021
    Publication date: December 15, 2022
    Inventors: Rajinder DHINDSA, Linying CUI, James ROGERS
  • Publication number: 20220399193
    Abstract: Embodiments provided herein generally include apparatus, e.g., plasma processing systems and methods for the plasma processing of a substrate in a processing chamber. In some embodiments, aspects of the apparatus and methods are directed to improving process uniformity across the surface of the substrate, reducing defectivity on the surface of the substrate, or both. In some embodiments, the apparatus and methods provide for improved control over the uniformity of a plasma formed over the edge of a substrate and/or the distribution of ion energies at the surface of the substrate. The improved control over the plasma uniformity may be used in combination with substrate handling methods, e.g., de-chucking methods, to reduce particulate-related defectivity on the surface of the substrate. In some embodiments, the improved control over the plasma uniformity is used to preferentially clean accumulated processing byproducts from portions of the edge ring during an in-situ plasma chamber cleaning process.
    Type: Application
    Filed: November 29, 2021
    Publication date: December 15, 2022
    Inventors: Linying CUI, James ROGERS
  • Publication number: 20220399185
    Abstract: Embodiments provided herein generally include plasma processing systems configured to preferentially clean desired surfaces of a substrate support assembly by manipulating one or more characteristics of an in-situ plasma and related methods. In one embodiment, a plasma processing method includes generating a plasma in a processing region defined by a chamber lid and a substrate support assembly, exposing an edge ring and a substrate supporting surface to the plasma, and establishing a pulsed voltage (PV) waveform at the edge control electrode.
    Type: Application
    Filed: December 27, 2021
    Publication date: December 15, 2022
    Inventors: Rajinder DHINDSA, Linying CUI, James ROGERS
  • Publication number: 20220399183
    Abstract: Embodiments provided herein include an apparatus and methods for the plasma processing of a substrate in a processing chamber. In some embodiments, aspects of the apparatus and methods are directed to reducing defectivity in features formed on the surface of the substrate, improving plasma etch rate, and increasing selectivity of etching material to mask and/or etching material to stop layer. In some embodiments, the apparatus and methods enable processes that can be used to prevent or reduce the effect of trapped charges, disposed within features formed on a substrate, on the etch rate and defect formation.
    Type: Application
    Filed: June 18, 2021
    Publication date: December 15, 2022
    Inventors: Linying CUI, James ROGERS, Rajinder DHINDSA, Kartik RAMASWAMY
  • Patent number: 11521828
    Abstract: Disclosed herein is an apparatus for processing a substrate using an inductively coupled plasma source. An inductively coupled plasma source utilizes a power source, a shield member, and a coil coupled to the power source. In certain embodiments, the coils are arranged with a horizontal spiral grouping and a vertical extending helical grouping. The shield member, according to certain embodiments, utilizes a grounding member to function as a Faraday shield. The embodiments herein reduce parasitic losses and instabilities in the plasma created by the inductively coupled plasma in the substrate processing system.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: December 6, 2022
    Assignee: Applied Materials, Inc.
    Inventors: James Rogers, John Poulose
  • Patent number: 11510818
    Abstract: A wound dressing containing a multi-ply knit fabric, where the fabric contains a first and a second knit ply. The first knit ply contains a plurality of first yarns and forms the upper surface of the fabric. The second knit ply contains a plurality of polytetrafluoroethylene (PTFE) yarns, where the PTFE yarns have a transmission in the IR region of 8-10 ?m at least about 40%, and a thermal conductivity of at least about 0.2 W/(m·K) forms the lower surface of the fabric. The first ply and the second ply are integrated through combined portions formed by interlacing first yarns among the PTFE yarns of the second knit ply, interlacing PTFE yarns among the first yarns of the first knit ply, or interlacing a plurality of third yarns among the first yarns and the PTFE. The multi-ply knit fabric also contains a composition containing at least one silver ion-containing compound.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: November 29, 2022
    Assignee: Milliken & Company
    Inventors: Rajib Mondal, Thomas C. Wiles, Petr Valenta, James A Rogers, Emily W. Michaels, Robert D. Miller
  • Patent number: 11508554
    Abstract: Embodiments described herein are applicable for use in all types of plasma assisted or plasma enhanced processing chambers and also for methods of plasma assisted or plasma enhanced processing of a substrate. More specifically, embodiments of this disclosure include a broadband filter assembly, also referred to herein as a filter assembly, that is configured to reduce and/or prevent RF leakage currents from being transferred from one or more RF driven components to a ground through other electrical components that are directly or indirectly electrically coupled to the RF driven components and ground with high input impedance (low current loss) making it compatible with shaped DC pulse bias applications.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: November 22, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Anurag Kumar Mishra, James Rogers, Leonid Dorf, Rajinder Dhindsa, Olivier Luere
  • Publication number: 20220367157
    Abstract: Embodiments of the present disclosure relate to a system for pulsed direct-current (DC) biasing and clamping a substrate. In one embodiment, the system includes a plasma chamber having an electrostatic chuck (ESC) for supporting a substrate. An electrode is embedded in the ESC and is electrically coupled to a biasing and clamping network. The biasing and clamping network includes at least a shaped DC pulse voltage source and a clamping network. The clamping network includes a DC source and a diode, and a resistor. The shaped DC pulse voltage source and the clamping network are connected in parallel. The biasing and clamping network automatically maintains a substantially constant clamping voltage, which is a voltage drop across the electrode and the substrate when the substrate is biased with pulsed DC voltage, leading to improved clamping of the substrate.
    Type: Application
    Filed: May 12, 2021
    Publication date: November 17, 2022
    Inventors: Linying CUI, James ROGERS, Leonid DORF
  • Publication number: 20220367158
    Abstract: Embodiments of the present disclosure relate to a system for pulsed direct-current (DC) biasing and clamping a substrate. In one embodiment, the system includes a plasma chamber having an electrostatic chuck (ESC) for supporting a substrate. An electrode is embedded in the ESC and is electrically coupled to a biasing and clamping network. The biasing and clamping network includes at least a shaped DC pulse voltage source and a clamping network. The clamping network includes a DC source and a diode, and a resistor. The shaped DC pulse voltage source and the clamping network are connected in parallel. The biasing and clamping network automatically maintains a substantially constant clamping voltage, which is a voltage drop across the electrode and the substrate when the substrate is biased with pulsed DC voltage, leading to improved clamping of the substrate.
    Type: Application
    Filed: May 12, 2021
    Publication date: November 17, 2022
    Inventors: Linying CUI, James ROGERS, Leonid DORF
  • Patent number: 11493309
    Abstract: The present invention provides process for producing a ballistic-resistant molded article, which molded article comprises: i) a plurality of layers of unidirectionally aligned polyolefin fibers, which layers are substantially absent a bonding matrix; and ii) a plurality of layers of adhesive, and which process comprises: a) providing a plurality of precursor sheets, each of said precursor sheets comprising i) at least one layer of unidirectionally aligned polyolefin fibers which layer is substantially absent a bonding matrix, and ii) at least one layer of adhesive; b) stacking said precursor sheets to form a stack, wherein the total amount of adhesive in the stack is from 5.0 to 12.0 wt. % based on the total weight of the stack; c) pressing the stack produced in step b) at a temperature of from 1 to 30° C. below the melting point of the polyolefin fibers and at a pressure of at least 8 MPa; and d) cooling the pressed stack produced in step c) to at least 50° C.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: November 8, 2022
    Assignee: DSM PROTECTIVE MATERIALS B.V.
    Inventors: Johann Van Elburg, Matthew Craig, James Rogers