Patents by Inventor James S. Im

James S. Im has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11942321
    Abstract: Methods and systems for crystallizing a thin film provide a laser beam spot that is continually advanced across tire thin film to create a sustained complete or partial molten zone that is translated across the thin film, and crystallizes to form uniform, small-grained crystalline structures or grains.
    Type: Grant
    Filed: July 22, 2022
    Date of Patent: March 26, 2024
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN CITY OF NEW YORK
    Inventors: James S. Im, Wenkai Pan
  • Publication number: 20220359198
    Abstract: Methods and systems for crystallizing a thin film provide a laser beam spot that is continually advanced across tire thin film to create a sustained complete or partial molten zone that is translated across the thin film, and crystallizes to form uniform, small-grained crystalline structures or grains.
    Type: Application
    Filed: July 22, 2022
    Publication date: November 10, 2022
    Inventors: James S. IM, Wenkai PAN
  • Patent number: 11437236
    Abstract: Methods and systems for crystallizing a thin film provide a laser beam spot that is continually advanced across the thin film to create a sustained complete or partial molten zone that is translated across the thin film, and crystallizes to form uniform, small-grained crystalline structures or grains.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: September 6, 2022
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THF CITY OF NEW YORK
    Inventors: James S. Im, Wenkai Pan
  • Publication number: 20200238441
    Abstract: Method and systems for crystallizing a thin film provide an optics system configured to produce a laser spot beam directed towards the thin film and truncate the laser spot beam before the laser spot beam comes into contact with the thin film. The truncated laser spot beam is continually translated in a first direction while irradiating an amorphous silicon area of the thin film to generate a molten zone in the irradiated amorphous silicon area, where the thin film cools and solidifies to form crystal grains.
    Type: Application
    Filed: October 15, 2018
    Publication date: July 30, 2020
    Inventors: James S. IM, Wenkai PAN, Ruobing SONG, Insung CHOI, Vernon WONG
  • Patent number: 10629434
    Abstract: A method for planarizing excimer laser annealed (ELA) polycrystalline thin films via irradiation. The method includes providing an ELA thin film having an oxide and a top surface with a first surface roughness defined at least by a first plurality of protrusions. The ELA thin film is etched to substantially remove the oxide. At least a portion of the etched ELA thin film is then irradiated using a short-pulse duration excimer laser beam, to form an irradiated thin film with a second surface roughness defined at least by a second plurality of protrusions. The second surface roughness is lower than the first surface roughness.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: April 21, 2020
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: James S. Im, Miao Yu
  • Publication number: 20190027363
    Abstract: Methods and systems for crystallizing a thin film provide a laser beam spot that is continually advanced across the thin film to create a sustained complete or partial molten zone that is translated across the thin film, and crystallizes to form uniform, small-grained crystalline structures or grains.
    Type: Application
    Filed: January 9, 2017
    Publication date: January 24, 2019
    Inventors: James S. IM, Wenkai PAN
  • Publication number: 20180019123
    Abstract: A method for planarizing excimer laser annealed (ELA) poly-crystalline thing films via irradiation. The method includes providing an ELA thin film having an oxide and a top surface with a first surface roughness defined at least by a first plurality of protrusions. The ELA thin film is etched to substantially remove the oxide. At least a portion of the etched ELA thin film is then irradiated using a short-pulse duration excimer laser beam, to form an irradiated thin film with a second surface roughness defined at least by a second plurality of protrusions. The second surface roughness is lower than the first surface roughness.
    Type: Application
    Filed: April 8, 2016
    Publication date: January 18, 2018
    Inventors: James S. IM, Miao YU
  • Patent number: 9646831
    Abstract: The present disclosure relates to a new generation of laser-crystallization approaches that can crystallize Si films for large displays at drastically increased effective crystallization rates. The particular scheme presented in this aspect of the disclosure is referred to as the advanced excimer-laser annealing (AELA) method, and it can be readily configured for manufacturing large OLED TVs using various available and proven technical components. As in ELA, it is mostly a partial-/near-complete-melting-regime-based crystallization approach that can, however, eventually achieve greater than one order of magnitude increase in the effective rate of crystallization than that of the conventional ELA technique utilizing the same laser source.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: May 9, 2017
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventor: James S. Im
  • Patent number: 9466402
    Abstract: Process and system for processing a thin film sample, as well as at least one portion of the thin film structure are provided. Irradiation beam pulses can be shaped to define at least one line-type beam pulse, which includes a leading portion, a top portion and a trailing portion, in which at least one part has an intensity sufficient to at least partially melt a film sample. Irradiating a first portion of the film sample to at least partially melt the first portion, and allowing the first portion to resolidify and crystallize to form an approximately uniform area therein. After the irradiation of the first portion of the film sample, irradiating a second portion using a second one of the line-type beam pulses to at least partially melt the second portion, and allowing the second portion to resolidify and crystallize to form an approximately uniform area therein.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: October 11, 2016
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: James S. Im, Paul Christiaan van der Wilt
  • Patent number: 9087696
    Abstract: In one aspect, the present disclosure relates to a method of processing a thin film including, while advancing a thin film in a first selected direction, irradiating a first region of the thin film with a first laser pulse and a second laser pulse, each laser pulse providing a shaped beam and having a fluence that is sufficient to partially melt the thin film and the first region re-solidifying and crystallizing to form a first crystallized region, and irradiating a second region of the thin film with a third laser pulse and a fourth laser pulse, each pulse providing a shaped beam and having a fluence that is sufficient to partially melt the thin film and the second region re-solidifying and crystallizing to form a second crystallized region, wherein the time interval between the first laser pulse and the second laser pulse is less than half the time interval between the first laser pulse and the third laser pulse.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: July 21, 2015
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: James S. Im, Yikang Deng, Qiongying Hu, Ui-Jin Chung, Alexander B. Limanov
  • Patent number: 9012309
    Abstract: Collections of laterally crystallized semiconductor islands for use in thin film transistors and systems and methods for making same are described. A display device includes a plurality of thin film transistors (TFTs) on a substrate, such that the TFTs are spaced apart from each other and each include a channel region that has a crystalline microstructure and a direction along which a channel current flows. The channel region of each of the TFTs contains a crystallographic grain that spans the length of that channel region along its channel direction. Each crystallographic grain in the channel region of each of the TFTs is physically disconnected from and crystallographically uncorrelated with each crystallographic grain in the channel region of each adjacent TFT.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: April 21, 2015
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: James S. Im, Ui-Jin Chung
  • Publication number: 20150076504
    Abstract: The present disclosure relates to a new generation of laser-crystallization approaches that can crystallize Si films for large displays at drastically increased effective crystallization rates. The particular scheme presented in this aspect of the disclosure is referred to as the advanced excimer-laser annealing (AELA) method, and it can be readily configured for manufacturing large OLED TVs using various available and proven technical components. As in ELA, it is mostly a partial-/near-complete-melting-regime-based crystallization approach that can, however, eventually achieve greater than one order of magnitude increase in the effective rate of crystallization than that of the conventional ELA technique utilizing the same laser source.
    Type: Application
    Filed: March 14, 2013
    Publication date: March 19, 2015
    Inventor: James S. Im
  • Publication number: 20150004808
    Abstract: The present disclosure is directed to methods and systems for processing a thin film samples. In an exemplary method, semiconductor thin films are loaded onto two different loading fixtures, laser beam pulses generated by a laser source system are split into first laser beam pulses and second laser beam pulses, the thin film loaded on one loading fixture is irradiated with the first laser beam pulses to induce crystallization while the thin film loaded on the other loading fixture is irradiated with the second laser beam pulses. In a preferred embodiment, at least a portion of the thin film that is loaded on the first loading fixture is irradiated while at least a portion of the thin film that is loaded on the second loading fixture is also being irradiated. In an exemplary embodiment, the laser source system includes first and second laser sources and an integrator that combines the laser beam pulses generated by the first and second laser sources to form combined laser beam pulses.
    Type: Application
    Filed: May 7, 2014
    Publication date: January 1, 2015
    Applicant: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventor: James S. IM
  • Publication number: 20140361414
    Abstract: Process and system for processing a thin film sample, as well as at least one portion of the thin film structure are provided. Irradiation beam pulses can be shaped to define at least one line-type beam pulse, which includes a leading portion, a top portion and a trailing portion, in which at least one part has an intensity sufficient to at least partially melt a film sample. Irradiating a first portion of the film sample to at least partially melt the first portion, and allowing the first portion to resolidify and crystallize to form an approximately uniform area therein. After the irradiation of the first portion of the film sample, irradiating a second portion using a second one of the line-type beam pulses to at least partially melt the second portion, and allowing the second portion to resolidify and crystallize to form an approximately uniform area therein.
    Type: Application
    Filed: June 23, 2014
    Publication date: December 11, 2014
    Inventors: James S Im, Paul Christiaan van der Wilt
  • Patent number: 8889569
    Abstract: The disclosed systems and method for non-periodic pulse sequential lateral solidification relate to processing a thin film. The method for processing a thin film, while advancing a thin film in a selected direction, includes irradiating a first region of the thin film with a first laser pulse and a second laser pulse and irradiating a second region of the thin film with a third laser pulse and a fourth laser pulse, wherein the time interval between the first laser pulse and the second laser pulse is less than half the time interval between the first laser pulse and the third laser pulse. In some embodiments, each pulse provides a shaped beam and has a fluence that is sufficient to melt the thin film throughout its thickness to form molten zones that laterally crystallize upon cooling. In some embodiments, the first and second regions are adjacent to each other. In some embodiments, the first and second regions are spaced a distance apart.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: November 18, 2014
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: James S. Im, Ui-Jin Chung, Alexander B. Limanov, Paul C. Van Der Wilt
  • Patent number: 8883656
    Abstract: High throughput systems and processes for recrystallizing thin film semiconductors that have been deposited at low temperatures on a substrate are provided. A thin film semiconductor workpiece is irradiated with a laser beam to melt and recrystallize target areas of the surface exposed to the laser beam. The laser beam is shaped into one or more beamlets using patterning masks. The mask patterns have suitable dimensions and orientations to pattern the laser beam radiation so that the areas targeted by the beamlets have dimensions and orientations that are conducive to semiconductor recrystallization. The workpiece is mechanically translated along linear paths relative to the laser beam to process the entire surface of the work piece at high speeds. Position sensitive triggering of a laser can be used to generate laser beam pulses to melt and recrystallize semiconductor material at precise locations on the surface of the workpiece while it is translated on a motorized stage.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: November 11, 2014
    Assignee: The Trustees of Columbia University in the City of New York
    Inventor: James S. Im
  • Patent number: 8871022
    Abstract: The disclosed subject matter relates to the use of laser crystallization of thin films to create epitaxially textured crystalline thick films. In one or more embodiments, a method for preparing a thick crystalline film includes providing a film for crystallization on a substrate, wherein at least a portion of the substrate is substantially transparent to laser irradiation, said film including a seed layer having a predominant surface crystallographic orientation; and a top layer disposed above the seed layer; irradiating the film from the back side of the substrate using a pulsed laser to melt a first portion of the top layer at an interface with the seed layer while a second portion of the top layer remains solid; and re-solidifying the first portion of the top layer to form a crystalline laser epitaxial with the seed layer thereby releasing heat to melt an adjacent portion of the top layer.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: October 28, 2014
    Assignee: The Trustees of Columbia University in the City of New York
    Inventor: James S. Im
  • Patent number: 8859436
    Abstract: Methods for processing an amorphous silicon thin film sample into a polycrystalline silicon thin film are disclosed. In one preferred arrangement, a method includes the steps of generating a sequence of excimer laser pulses, controllably modulating each excimer laser pulse in the sequence to a predetermined fluence, masking portions of each fluence controlled laser pulse in the sequence with a two dimensional pattern of slits to generate a sequence of fluence controlled pulses of line patterned beamlets, irradiating an amorphous silicon thin film sample with the sequence of fluence controlled slit patterned beamlets to effect melting of portions thereof, and controllably sequentially translating a relative position of the sample with respect to each of the fluence controlled pulse of slit patterned beamlets to thereby process the amorphous silicon thin film sample into a single or polycrystalline silicon thin film.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: October 14, 2014
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: James S. Im, Robert S. Sposili, Mark A. Crowder
  • Patent number: 8802580
    Abstract: Crystallization of thin films using pulsed irradiation The method includes continuously irradiating a film having an x-axis and a y-axis, in a first scan in the x-direction of the film with a plurality of line beam laser pulses to form a first set of irradiated regions, translating the film a distance in the y-direction of the film, wherein the distance is less than the length of the line beam, and continuously irradiating the film in a second scan in the negative x-direction of the film with a sequence of line beam laser pulses to form a second set of irradiated regions, wherein each of the second set of irradiated regions overlaps with a portion of the first set of irradiated regions, and wherein each of the first and the second set of irradiated regions upon cooling forms one or more crystallized regions.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: August 12, 2014
    Assignee: The Trustees of Columbia University in the City of New York
    Inventor: James S. Im
  • Patent number: 8796159
    Abstract: Process and system for processing a thin film sample, as well as at least one portion of the thin film structure are provided. Irradiation beam pulses can be shaped to define at least one line-type beam pulse, which includes a leading portion, a top portion and a trailing portion, in which at least one part has an intensity sufficient to at least partially melt a film sample. Irradiating a first portion of the film sample to at least partially melt the first portion, and allowing the first portion to resolidify and crystallize to form an approximately uniform area therein. After the irradiation of the first portion of the film sample, irradiating a second portion using a second one of the line-type beam pulses to at least partially melt the second portion, and allowing the second portion to resolidify and crystallize to form an approximately uniform area therein.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: August 5, 2014
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: James S. Im, Paul Christiaan van der Wilt