Patents by Inventor James S. Papanu

James S. Papanu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100311228
    Abstract: Embodiments disclosed herein generally relate to a process of depositing a transparent conductive oxide layer over a substrate. The transparent oxide layer is sometimes deposited onto a substrate for later use in a solar cell device. The transparent conductive oxide layer may be deposited by a “cold” sputtering process. In other words, during the sputtering process, a plasma is ignited in the processing chamber which naturally heats the substrate. No additional heat is provided to the substrate during deposition such as from the susceptor. After the transparent conductive oxide layer is deposited, the substrate may be annealed and etched, in either order, to texture the transparent conductive oxide layer. In order to tailor the shape of the texturing, different wet etch chemistries may be utilized. The different etch chemistries may be used to shape the surface of the transparent conductive oxide and the etch rate.
    Type: Application
    Filed: March 29, 2010
    Publication date: December 9, 2010
    Inventors: VALERY V. KOMIN, Hien-Minh Huu Le, David Tanner, James S. Papanu, Philip A. Greene, Suresh M. Shrauti, Roman Gouk, Steven Verhaverbeke
  • Patent number: 7846347
    Abstract: The invention provides for a method and integrated system for removing a halogen-containing residue from a substrate comprising etching the substrate, heating the substrate and exposing the heated substrate to a plasma that removes the halogen-containing residue.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: December 7, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Mark N. Kawaguchi, James S. Papanu, Scott Williams, Matthew Fenton Davis
  • Patent number: 7718009
    Abstract: Cleaning solutions and cleaning methods targeted to particular substrates and structures in semiconductor fabrication are described. A method of cleaning fragile structures having a dimension less than 0.15 um with a cleaning solution formed of a solvent having a surface tension less than water while applying acoustic energy to the substrate on which the structures are formed is described. Also, a method of cleaning copper with several different cleaning solutions, and in particular an aqueous sulfuric acid and HF cleaning solution, is described. Also, methods of cleaning both sides of a substrate at the same time with different cleaning solutions applied to the top and the bottom are described.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: May 18, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Steven Verhaverbeke, Jianshe Tang, Roman Gouk, Brian J. Brown, Han-Wen Chen, Ching-Hwa Weng, James S. Papanu, Dennis Yost
  • Publication number: 20100104953
    Abstract: A H2O vapor based dry plasma process for pre-treating and strip-cleaning a reticle, a three layer gas distribution plate (GDP) assembly to control the heat load to the reticle during the plasma process, and a modified hole pattern for the GDP that further enhances stripping of resist from the edges of the reticle are disclosed.
    Type: Application
    Filed: October 24, 2008
    Publication date: April 29, 2010
    Inventors: James S. Papanu, Roman Gouk, Han-Wen Chen, Phillip Peters
  • Patent number: 7694688
    Abstract: The present invention generally provides an apparatus and method for processing and transferring substrates in a multi-chamber processing system that has the capability of receiving and performing single substrate processing steps performed in parallel, while using the many favorable aspects of batch processing. Embodiments of the invention described herein are adapted to maximize system throughput, reduce system cost, reduce cost per substrate during processing, increase system reliability, improve the device yield on the processed substrates, and reduce system footprint. In one embodiment, the cluster tool is adapted to perform a wet/clean process sequence in which various substrate cleaning processes are performed on a substrate in the cluster tool.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: April 13, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Paul Lester, Scott Meyer, Wyland L. Atkins, Douglas Richards, Constantin Predoaica, Jeffrey Hudgens, Charles Carlson, Penchala Kankanala, Mike Rice, James S. Papanu, Evanson G. Baiya, John J. Rosato
  • Publication number: 20100078039
    Abstract: Aspects of the invention generally provide methods and apparatus for cleaning adhesive residual on a photomask substrate. In one embodiment, the apparatus includes a processing cell, a support assembly configured to receive a photomask substrate disposed thereon disposed in the processing cell, a protection head assembly disposed above and facing the support assembly, and a head actuator configured to control the elevation of the protection head assembly relative to an upper surface of the support assembly. A cleaning device is provided and positioned to interact with the photomask substrate disposed on the support assembly.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Inventors: Banqiu Wu, Richard Lee, M. Rao Yalamanchili, Ajay Kumar, James S. Papanu, Chung-Huan Jeon
  • Publication number: 20100028813
    Abstract: A pellicle cover, system, and method for cleaning a photomask are disclosed. A pellicle cover is disposed over a photomask and pellicle without damaging the markings surrounding the mask pattern area. The pellicle cover can be practicably implemented in an improved photomask cleaning system and process in which the backside of the photomask may be cleaned without removing the pellicle from the patterned surface.
    Type: Application
    Filed: August 4, 2008
    Publication date: February 4, 2010
    Inventors: Banqiu Wu, Ajay Kumar, Amitabh Sabharwal, Roman Gouk, James S. Papanu
  • Patent number: 7648916
    Abstract: Methods for monitoring and detecting optical emissions while performing photoresist stripping and removal of residues from a substrate or a film stack on a substrate are provided herein. In one embodiment, a method is provided that includes positioning a substrate comprising a photoresist layer into a processing chamber; processing the photoresist layer using a multiple step plasma process; and monitoring the plasma for a hydrogen optical emission during the multiple step plasma process; wherein the multiple step plasma process includes removing a bulk of the photoresist layer using a bulk removal step; and switching to an overetch step in response to the monitored hydrogen optical emission.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: January 19, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Elizabeth G. Pavel, Mark N. Kawaguchi, James S. Papanu
  • Patent number: 7604708
    Abstract: A substrate cleaning apparatus has a remote source to remotely energize a hydrogen-containing gas to form an energized gas having a first ratio of ionic hydrogen-containing species to radical hydrogen-containing species. The apparatus has a process chamber with a substrate support, an ion filter to filter the remotely energized gas to form a filtered energized gas having a second ratio of ionic hydrogen-containing species to radical hydrogen-containing species, the second ratio being different than the first ratio, and a gas distributor to introduce the filtered energized gas into the chamber.
    Type: Grant
    Filed: February 12, 2004
    Date of Patent: October 20, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Bingxi Sun Wood, Mark N. Kawaguchi, James S. Papanu, Roderick C. Mosely, Chiukun Steven Lai, Chien-Teh Kao, Hua Ai, Wei W. Wang
  • Publication number: 20090255555
    Abstract: A method and apparatus for cleaning a workpiece are disclosed. A gas and cleaning solution are supplied to an atomizing nozzle which atomizes the cleaning solution and sprays the top surface of a workpiece with an atomized spray. A liquid having a controlled gas content is flowed to the top surface of the workpiece from a rinse nozzle. Megasonic energy is applied from the backside of the workpiece.
    Type: Application
    Filed: April 14, 2008
    Publication date: October 15, 2009
    Applicant: BLAKELY, SOKOLOFF, TAYLOR & ZAFMAN
    Inventors: Roman Gouk, Chung-Huan Jeon, Zhiyong Li, Madhava Rao Yalamanchili, James S. Papanu
  • Patent number: 7432177
    Abstract: A combination of a dry oxidizing, wet etching, and wet cleaning processes are used to remove particle defects from a wafer after ion implantation, as part of a wafer bonding process to fabricate a SOI wafer. The particle defects on the topside and the backside of the wafer are oxidized, in a dry strip chamber, with an energized gas. In a wet clean chamber, the backside of the wafer is treated with an etchant solution to remove completely or partially a thermal silicon oxide layer, followed by exposure of the topside and the backside to a cleaning solution. The cleaning solution contains ammonium hydroxide, hydrogen peroxide, DI water, and optionally a chelating agent, and a surfactant. The wet clean chamber is integrated with the dry strip chamber and contained in a single wafer processing system.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: October 7, 2008
    Assignee: Applied Materials, Inc.
    Inventors: James S. Papanu, Han-Wen Chen, Brian J. Brown, Steven Verhaverbeke
  • Publication number: 20080166208
    Abstract: The present invention generally provides an apparatus and method for processing and transferring substrates in a multi-chamber processing system that has the capability of receiving and performing single substrate processing steps performed in parallel, while using the many favorable aspects of batch processing. Embodiments of the invention described herein are adapted to maximize system throughput, reduce system cost, reduce cost per substrate during processing, increase system reliability, improve the device yield on the processed substrates, and reduce system footprint. In one embodiment, the cluster tool is adapted to perform a wet/clean process sequence in which various substrate cleaning processes are performed on a substrate in the cluster tool.
    Type: Application
    Filed: January 5, 2007
    Publication date: July 10, 2008
    Inventors: Paul Lester, Scott Meyer, Wyland L. Atkins, Douglas Richards, Constantin Predoaica, Jeffrey Hudgens, Charles Carlson, Penchala Kankanala, Mike Rice, James S. Papanu, Evanson G. Baiya, John J. Rosato
  • Patent number: 7374696
    Abstract: The invention provides for a method and integrated system for removing a halogen-containing residue from a substrate comprising etching the substrate, heating the substrate and exposing the heated substrate to a plasma that removes the halogen-containing residue.
    Type: Grant
    Filed: February 11, 2004
    Date of Patent: May 20, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Mark N. Kawaguchi, James S. Papanu, Scott Williams, Matthew Fenton Davis
  • Publication number: 20080078424
    Abstract: Embodiments of methods for decreasing the process time for photoresist stripping from photomasks are herein disclosed. In some embodiments, a stripping solution and a cleaning solution are consecutively applied in an alternating manner to a photomask to remove photoresist from the mask. The stripping solution and the cleaning solution can each be applied between 6 and 12 times. The stripping solution and the cleaning solution can be applied in a predetermined time interval from about 30 seconds to about 120 seconds and from about 8 seconds to about 30 seconds, respectively. The process can include a finishing process which can include a final cleaning operation, a rinsing operation and a drying operation.
    Type: Application
    Filed: September 28, 2006
    Publication date: April 3, 2008
    Inventors: Roman Gouk, Phillip Peters, Han-Wen Chen, James S. Papanu
  • Patent number: 6991739
    Abstract: A method of photoresist removal is described. A substrate is located in a processing chamber. A mixture of gases is excited, the mixture comprising a majority component of a reducing process gas and a minority component of between 0.1% and 10% by volume of an oxidizing process gas. Reactive gas species are thereby generated. A photoresist layer with an exposed dielectric layer on the substrate in the chamber is then exposed to the reactive gas mixture to selectively remove the photoresist layer from the dielectric layer.
    Type: Grant
    Filed: October 15, 2001
    Date of Patent: January 31, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Mark N. Kawaguchi, Huong T. Nguyen, Nikolaos Bekiaris, James S. Papanu
  • Publication number: 20040219789
    Abstract: A substrate cleaning apparatus has a remote source to remotely energize a hydrogen-containing gas to form an energized gas having a first ratio of ionic hydrogen-containing species to radical hydrogen-containing species. The apparatus has a process chamber with a substrate support, an ion filter to filter the remotely energized gas to form a filtered energized gas having a second ratio of ionic hydrogen-containing species to radical hydrogen-containing species, the second ratio being different than the first ratio, and a gas distributor to introduce the filtered energized gas into the chamber.
    Type: Application
    Filed: February 12, 2004
    Publication date: November 4, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Bingxi Sun Wood, Mark N. Kawaguchi, James S. Papanu, Roderick C. Mosely, Chiukin Steven Lai, Chien-Teh Kao, Hua Ai, Wei W. Wang
  • Publication number: 20040203251
    Abstract: The invention provides for a method and integrated system for removing a halogen-containing residue from a substrate comprising etching the substrate, heating the substrate and exposing the heated substrate to a plasma that removes the halogen-containing residue.
    Type: Application
    Filed: February 11, 2004
    Publication date: October 14, 2004
    Inventors: Mark N. Kawaguchi, James S. Papanu, Scott Williams, Matthew Fenton Davis
  • Publication number: 20040195208
    Abstract: A method for monitoring and detecting a hydrogen optical emission while performing photoresist stripping and removal of residues from a substrate or a film stack on a substrate.
    Type: Application
    Filed: February 11, 2004
    Publication date: October 7, 2004
    Inventors: Elizabeth G. Pavel, Mark N. Kawaguchi, James S. Papanu
  • Patent number: 6692903
    Abstract: A method of processing a substrate 30 comprises exposing the substrate 30 to an energized process gas to etch features 67 on the substrate 30 and exposing the substrate 30 to an energized cleaning gas to remove etchant residue 70 and/or remnant resist 60 from the substrate 30. To enhance the cleaning process, the substrate 30 may be treated before, during or after the cleaning process by exposing the substrate 30 to an energized treating gas comprising a halogen species.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: February 17, 2004
    Assignee: Applied Materials, Inc
    Inventors: Haojiang Chen, James S. Papanu, Mark Kawaguchi, Harald Herchen, Jeng H. Hwang, Guangxiang Jin, David Palagashvili
  • Publication number: 20030075524
    Abstract: A method of photoresist removal is described. A substrate is located in a processing chamber. A mixture of gases is excited, the mixture comprising a majority component of a reducing process gas and a minority component of between 0.1% and 10% by volume of an oxidizing process gas. Reactive gas species are thereby generated. A photoresist layer with an exposed dielectric layer on the substrate in the chamber is then exposed to the reactive gas mixture to selectively remove the photoresist layer from the dielectric layer.
    Type: Application
    Filed: October 15, 2001
    Publication date: April 24, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Mark N. Kawaguchi, Huong T. Nguyen, Nikolaos Bekiaris, James S. Papanu