Patents by Inventor James Scott Sutherland

James Scott Sutherland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210018697
    Abstract: Waveguide substrates, waveguide substrate assemblies, and methods for fabricating waveguide substrates are disclosed. In one embodiment, a waveguide substrate includes an input edge, an output edge, and at least one waveguide within the waveguide substrate. The waveguide substrate further includes at least one input alignment feature within the input edge adjacent to the input end of the at least one waveguide, wherein the at least one input alignment feature is fabricated from a material of the waveguide substrate. The waveguide substrate may also include at least one output alignment feature within the input edge adjacent to the output end of the at least one waveguide, wherein the at least one output alignment feature is fabricated from the material of the waveguide substrate.
    Type: Application
    Filed: September 24, 2020
    Publication date: January 21, 2021
    Inventors: Alan Frank Evans, Micah Colen Isenhour, Christopher Paul Lewallen, James Scott Sutherland
  • Patent number: 10895687
    Abstract: Disclosed is an optical interconnection device that includes an alignment ferrule assembly formed from an alignment substrate and optical fibers. The optical interconnection device also has an alignment assembly formed by a planar support member with guide features. A receiving region resides between the guide features in which the alignment substrate is secured. An evanescent optical coupler can be formed using the optical interconnection device as a first device and another optical interconnection device as a second device. The second device is constituted by a planar lightwave circuit that operably supports waveguides and an adapter. The adapter of the second device is configured to engage the alignment assembly of the first device to place the optical fibers and the optical waveguides of the respective devices in evanescent optical communication.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: January 19, 2021
    Assignee: Corning Research & Development Corporation
    Inventor: James Scott Sutherland
  • Publication number: 20210011229
    Abstract: Waveguide substrate, waveguide substrate assemblies and methods of fabricating waveguide substrates having various waveguide routing schemes are disclosed. In one embodiment, a waveguide substrate includes a first surface and a second surface, and a plurality of waveguides within the waveguide substrate. The plurality of waveguides defines a plurality of inputs at the first surface. A subset of the plurality of waveguides extends to the second surface to at least partially define a plurality of outputs at the second surface. In one waveguide routing scheme, at least one branching waveguide extends between one of the first surface and the second surface to a surface other than the first surface and the second surface. Another waveguide routing scheme arranges the plurality of waveguides into optical receive-transmit pairs for duplex pairing of optical signals.
    Type: Application
    Filed: September 24, 2020
    Publication date: January 14, 2021
    Inventors: Alan Frank Evans, Christian Fiebig, Claudio Mazzali, James Scott Sutherland
  • Patent number: 10816735
    Abstract: Optical assemblies and lensed connector ferrule assemblies having one or more optical fibers aligned to one or more lenses of a lens substrate and methods of their manufacture are disclosed. In one embodiment, an optical assembly includes a ferrule and a mirror surface. The ferrule includes a lens holder having a lens substrate cavity and an engagement surface. The ferrule further includes a lens substrate disposed within the lens substrate cavity. The lens substrate has at least one lens. The mirror surface is coupled to the engagement surface such that the at least one lens is offset from the mirror surface by an offset distance.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: October 27, 2020
    Assignee: Corning Research & Development Corporation
    Inventors: Alexander Lee Cuno, Oberon Denaci Deichmann, Davide Domenico Fortusini, Wei Jiang, William James Miller, James Scott Sutherland
  • Patent number: 10816702
    Abstract: A high stiffness substrate for optical elements is described. The substrate includes a graphite finishing layer and a non-oxide ceramic base substrate. The non-oxide ceramic base substrate is preferably a carbide, such as boron carbide or silicon carbide. The graphite finishing layer may include a surface with low finish. Low finish may be achieved by diamond turning the graphite surface. The graphite finishing layer may be joined to the non-oxide base ceramic with a solder. A supplemental finishing layer may be formed on the graphite finishing layer. A reflective stack may be formed on the graphite or supplemental finishing layer. Methods for making the substrate are also described.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: October 27, 2020
    Assignee: Corning Incorporated
    Inventors: James Scott Sutherland, Leonard Gerard Wamboldt, Kenneth Smith Woodard
  • Patent number: 10795086
    Abstract: A photonic adaptor has a first face side to couple the photonic adaptor to an optical connector and a second face side to couple the photonic adaptor to an optoelectronic substrate. The photonic adaptor comprises a plurality of optical fibers being arranged between the first face side and the second face side of the photonic adaptor. The photonic adaptor comprises at least one alignment pin projecting out of at least the first face side of the photonic adaptor. The at least one alignment pin is configured to be inserted in the optical connector to align optical fibers of an optical cable to the optical fibers of the photonic adaptor.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: October 6, 2020
    Assignee: Corning Optical Communications LLC
    Inventors: Andreas Matiss, James Scott Sutherland
  • Patent number: 10782474
    Abstract: Detachable optical connectors including a connector support for optical chips and methods of their fabrication are disclosed. In one embodiment, an optical assembly includes an optical chip including a surface, an edge extending from the surface, and at least one chip waveguide proximate the surface and terminating at the edge. The optical assembly further includes a waveguide support having a chip coupling surface, and at least one waveguide disposed within the waveguide support and terminating at the chip coupling surface, wherein the chip coupling surface is coupled to the edge of the optical chip such that the at least one waveguide within the waveguide support is optically coupled to the at least one chip waveguide of the optical chip. The optical assembly further includes a connector support having a first portion coupled to the optical chip, and a second portion coupled to the waveguide support.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: September 22, 2020
    Assignee: Corning Research & Development Corporation
    Inventors: Lars Martin Otfried Brusberg, Douglas Llewellyn Butler, Michael de Jong, Alan Frank Evans, Andreas Matiss, James Scott Sutherland
  • Patent number: 10746937
    Abstract: Assemblies, optical connectors, and methods for bonding optical elements to a substrate using a laser beam are disclosed. In one embodiment, a method of bonding an optical element to a substrate includes disposing a film layer on a surface of the substrate, disposing the optical element on a surface of the film layer, and directing a laser beam into the optical element. The method further includes melting, using the diameter laser beam, a material of the substrate to create a bond area between the optical element and the surface of the substrate. The film layer is capable of absorbing a wavelength of the laser beam to melt the material of the substrate at the bond area. The bond area includes laser-melted material of the substrate that bonds the optical element to the substrate.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: August 18, 2020
    Assignee: Corning Incorporated
    Inventors: Douglas Llewellyn Butler, Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov, James Scott Sutherland
  • Patent number: 10684419
    Abstract: Optical waveguide connector elements for optical coupling optical components of an optical assembly, such as the edge coupling of optical printed circuit boards. In one embodiment, a waveguide connector element includes a first end face and a second end face, a pre-existing optical waveguide within or on a surface of the waveguide connector element, and a laser written optical waveguide optically coupled to an end of the pre-existing optical waveguide and extending toward one of the first end face and the second end face.
    Type: Grant
    Filed: January 21, 2019
    Date of Patent: June 16, 2020
    Assignee: Corning Optical Communications LLC
    Inventors: Davide Domenico Fortusini, Lars Martin Otfried Brusberg, James Scott Sutherland
  • Publication number: 20200132934
    Abstract: Disclosed is an optical interconnection device that includes an alignment ferrule assembly formed from an alignment substrate and optical fibers. The optical interconnection device also has an alignment assembly formed by a planar support member with guide features. A receiving region resides between the guide features in which the alignment substrate is secured. An evanescent optical coupler can be formed using the optical interconnection device as a first device and another optical interconnection device as a second device. The second device is constituted by a planar lightwave circuit that operably supports waveguides and an adapter. The adapter of the second device is configured to engage the alignment assembly of the first device to place the optical fibers and the optical waveguides of the respective devices in evanescent optical communication.
    Type: Application
    Filed: October 31, 2018
    Publication date: April 30, 2020
    Inventor: James Scott Sutherland
  • Patent number: 10627588
    Abstract: Optical interconnection assemblies, glass interconnection substrates, and methods for making optical connections are disclosed. In one embodiment, an optical interconnection assembly includes a base substrate, a substrate optical waveguide coupled to the base substrate, the substrate optical waveguide having an end surface, an optical chip comprising an optical coupling surface, and a glass interconnection substrate. The glass interconnection substrate includes a first end optically coupled to the end surface of the substrate optical waveguide, a second end optically coupled to the optical coupling surface of the optical chip, and a curved portion disposed between the first end and the second end. The glass interconnection substrate further includes an optical waveguide at least partially positioned within the curved portion.
    Type: Grant
    Filed: February 19, 2018
    Date of Patent: April 21, 2020
    Assignee: Corning Optical Communications LLC
    Inventors: Chenueh Abongwa Florian Lohse, James Scott Sutherland
  • Patent number: 10578811
    Abstract: Methods of forming a ferrule are disclosed where the ferrule includes an inner member and an outer member. An optical fiber is secured in an axial bore of the inner member, and then offset of a core of the optical fiber from a geometric center of the inner member is determined. The outer member is then formed over the inner member to “correct” for this offset so that the core of the optical fiber ends up closer to the geometric center of the resulting ferrule. Related ferrules and cable assemblies including the same are also disclosed.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: March 3, 2020
    Assignee: Corning Optical Communications LLC
    Inventors: Dana Craig Bookbinder, Garrett Andrew Piech, James Scott Sutherland, Michael Brian Webb, Elvis Alberto Zambrano
  • Publication number: 20200057202
    Abstract: Assemblies, optical connectors, and methods for bonding optical elements to a substrate using a laser beam are disclosed. In one embodiment, a method of bonding an optical element to a substrate includes disposing a film layer on a surface of the substrate, disposing the optical element on a surface of the film layer, and directing a laser beam into the optical element. The method further includes melting, using the diameter laser beam, a material of the substrate to create a bond area between the optical element and the surface of the substrate. The film layer is capable of absorbing a wavelength of the laser beam to melt the material of the substrate at the bond area. The bond area includes laser-melted material of the substrate that bonds the optical element to the substrate.
    Type: Application
    Filed: October 25, 2019
    Publication date: February 20, 2020
    Inventors: Douglas Llewellyn Butler, Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov, James Scott Sutherland
  • Patent number: 10564354
    Abstract: The optical-electrical interconnection device comprises a glass support member with front-end and back-end portions that define a plane and an aperture. A cantilever member extends from the back-end portion into the aperture. The cantilever member supports an interconnection optical waveguide. The cantilever member comprises a bend region that causes a front-end section of the cantilever member to extend out of the plane. The front-end section is flexible, which allows for the interconnection optical waveguide to be aligned and optically coupled to a device waveguide of an optical-electrical device. A photonic assembly is formed using the optical-electrical interconnection device and at least one optical-electrical device. Methods of forming optical and electrical interconnections using the optical-electrical interconnection device are also disclosed.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: February 18, 2020
    Assignee: Corning Optical Communications LLC
    Inventors: Davide Domenico Fortusini, Scott Christopher Pollard, Alexander Mikhailovich Streltsov, James Scott Sutherland
  • Publication number: 20200041731
    Abstract: Optical assemblies and lensed connector ferrule assemblies having one or more optical fibers aligned to one or more lenses of a lens substrate and methods of their manufacture are disclosed. In one embodiment, an optical assembly includes a ferrule and a mirror surface The ferrule includes a lens holder having a lens substrate cavity and an engagement surface. The ferrule further includes a lens substrate disposed within the lens substrate cavity. The lens substrate has at least one lens. The mirror surface is coupled to the engagement surface such that the at least one lens is offset from the mirror surface by an offset distance.
    Type: Application
    Filed: June 27, 2019
    Publication date: February 6, 2020
    Inventors: Alexander Lee Cuno, Oberon Denaci Deichmann, Davide Domenico Fortusini, Wei Jiang, William James Miller, James Scott Sutherland
  • Patent number: 10545293
    Abstract: Assemblies, optical connectors, and methods for bonding optical fibers to a substrate using a laser beam are disclosed. In one embodiment, a method of bonding an optical fiber to a substrate includes directing a laser beam into the optical fiber disposed on a surface of the substrate, wherein the optical fiber has a curved surface and the curved surface of the optical fiber focuses the laser beam to a diameter that is smaller than a diameter of the laser beam as it enters the optical fiber. The method further includes melting, using the laser beam, a material of the substrate at a bond area between the optical fiber and the surface of the substrate such that the optical fiber is bonded to the surface of the substrate.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: January 28, 2020
    Assignee: Corning Incorporated
    Inventors: Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov, Douglas Llewellyn Butler, James Scott Sutherland
  • Patent number: 10527806
    Abstract: The glass-based ferrules include a glass substrate and two spaced-apart guide tubes, which can also be made of glass. The guide tubes include bores sized to receive guide pins from another ferrule. The ferrule can be used to form an optical interconnection device in the form of a waveguide connector that includes a planar lightwave circuit that supports multiple waveguides. The ferrule can also be used to form an optical interconnection device in the form of a fiber connector that includes a support substrate and an array of optical fibers supported thereby. The waveguide connector and fiber connector when mated form an integrated photonic device. Methods of forming the ferrule components, the ferrules and the optical interconnection devices are also disclosed.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: January 7, 2020
    Assignee: Corning Research & Development Corporation
    Inventors: Douglas Llewellyn Butler, Michael de Jong, Alan Frank Evans, Robin May Force, James Scott Sutherland
  • Patent number: 10514506
    Abstract: An optical coupler that provides evanescent optical coupling includes an optical fiber and a waveguide. The optical fiber has a glass core, a glass inner cladding surrounding the glass core, and a polymeric outer cladding surrounding the glass inner cladding. The glass core and glass inner cladding define for the fiber a glass portion, which can be exposed at one end of the fiber by removing a portion of the polymeric outer cladding. The glass portion has a glass-portion surface. The waveguide has a waveguide core and a surface, and can be part of a photonic device. The glass portion of the fiber is interfaced with the waveguide to establish evanescent coupling between the fiber and the waveguide. Alignment features are used to facilitate aligning the fiber core to the waveguide core during the interfacing process to ensure suitable efficiency of the evanescent coupling.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: December 24, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Lars Martin Otfried Brusberg, Douglas Llewellyn Butler, Alan Frank Evans, Ming-Jun Li, James Scott Sutherland
  • Publication number: 20190384007
    Abstract: A photonic adaptor has a first face side to couple the photonic adaptor to an optical connector and a second face side to couple the photonic adaptor to an optoelectronic substrate. The photonic adaptor comprises a plurality of optical fibers being arranged between the first face side and the second face side of the photonic adaptor. The photonic adaptor comprises at least one alignment pin projecting out of at least the first face side of the photonic adaptor. The at least one alignment pin is configured to be inserted in the optical connector to align optical fibers of an optical cable to the optical fibers of the photonic adaptor.
    Type: Application
    Filed: August 29, 2019
    Publication date: December 19, 2019
    Inventors: Andreas Matiss, James Scott Sutherland
  • Publication number: 20190321922
    Abstract: Methods of reshaping ferrules used in optical fiber cables assemblies are disclosed. The reshaping methods reduce a core-to-ferrule concentricity error (E), which improves coupling efficiency and optical transmission. The methods include measuring a true center of the ferrule, wherein the true center is based on an outer surface of the ferrule; and reshaping at least a portion of the ferrule to change the true center of the ferrule, wherein the reshaping includes enlarging a portion of the ferrule. A variety of reshaping techniques are also disclosed.
    Type: Application
    Filed: July 1, 2019
    Publication date: October 24, 2019
    Inventors: Dana Craig Bookbinder, Boyang Lin, Garrett Andrew Piech, Steven Ross Sims, James Scott Sutherland, Michael Brian Webb, Elvis Alberto Zambrano