Patents by Inventor James T. Dolan

James T. Dolan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6617806
    Abstract: An electrodeless microwave discharge lamp includes a source of microwave energy, a microwave cavity, a structure configured to transmit the microwave energy from the source to the microwave cavity, a bulb disposed within the microwave cavity, the bulb including a discharge forming fill which emits light when excited by the microwave energy, and a reflector disposed within the microwave cavity, wherein the reflector defines a reflective cavity which encompasses the bulb within its volume and has an inside surface area which is sufficiently less than an inside surface area of the microwave cavity. A portion of the reflector may define a light emitting aperture which extends from a position closely spaced to the bulb to a light transmissive end of the microwave cavity. Preferably, at least a portion of the reflector is spaced from a wall of the microwave cavity. The lamp may be substantially sealed from environmental contamination.
    Type: Grant
    Filed: February 6, 2001
    Date of Patent: September 9, 2003
    Assignee: Fusion Lighting, Inc.
    Inventors: Douglas A. Kirkpatrick, James T. Dolan, Donald A. MacLennan, Brian P. Turner, James E. Simpson
  • Patent number: 6469444
    Abstract: A discharge lamp for providing visible radiation includes a lamp envelope which is made of light transmissive material a fill in the envelope including either calcium halide or strontium halide together with either elemental sulfur or elemental selenium in gaseous form which is obtainable when the fill is excited by sufficient power in operation, in an amount such that the excited fill emits a discharge of visible radiation from the fill with substantially all of the radiation being molecular radiation which is emitted in the visible region of the spectrum. The calcium halide or strontium halide operates at a vapor pressure which provides a significant amount of radiation in the red region of the spectrum therefrom and the overall spectrum has a color rendering index of about 87 or more.
    Type: Grant
    Filed: October 2, 2000
    Date of Patent: October 22, 2002
    Assignee: Fusion Lighting, Inc.
    Inventors: Yongzhang Leng, James T. Dolan, Bruce Shanks
  • Publication number: 20020101191
    Abstract: An electrodeless microwave discharge lamp includes a substantially sealed microwave cavity, an envelope disposed within the sealed cavity, the envelope containing a fill which emits light when excited by microwave energy, and means for circulating air inside the sealed microwave cavity. For example, the means for circulating air includes a ceramic reflector inside the cavity with defined air flow channels. The lamp may further include a fan for moving air through the defined air flow channels. For example, the envelope is adapted to rotate during operation and blades are mounted on the stem of the bulb inside the sealed cavity. A sealed light distribution system includes a hollow light pipe having an opening at one end and an annular ring of elastomeric material secured to the open end of the light pipe. When used with a lamp with a reflector, the reflector is received in the opening of the ring and the ring forms a seal around the outside of the reflector.
    Type: Application
    Filed: November 13, 2001
    Publication date: August 1, 2002
    Inventors: James T. Dolan, Kent Kipling, Michael Dubinovsky
  • Publication number: 20020030453
    Abstract: An electrodeless microwave discharge lamp includes a source of microwave energy, a microwave cavity, a structure configured to transmit the microwave energy from the source to the microwave cavity, a bulb disposed within the microwave cavity, the bulb including a discharge forming fill which emits light when excited by the microwave energy, and a reflector disposed within the microwave cavity, wherein the reflector defines a reflective cavity which encompasses the bulb within its volume and has an inside surface area which is sufficiently less than an inside surface area of the microwave cavity. A portion of the reflector may define a light emitting aperture which extends from a position closely spaced to the bulb to a light transmissive end of the microwave cavity. Preferably, at least a portion of the reflector is spaced from a wall of the microwave cavity. The lamp may be substantially sealed from environmental contamination.
    Type: Application
    Filed: February 6, 2001
    Publication date: March 14, 2002
    Inventors: Douglas A. Kirkpatrick, James T. Dolan, Donald A. MacLennan, Brian P. Turner, James E. Simpson
  • Patent number: 6310443
    Abstract: A jacketed lamp bulb envelope includes a ceramic cup having an open end and a partially closed end, the partially closed end defining an aperture, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material at least partially covering a portion of the bulb not abutting the aperture. The reflective ceramic material may substantially fill an interior volume of the ceramic cup not occupied by the bulb. The ceramic cup may include a structural feature for aiding in alignment of the jacketed lamp bulb envelope in a lamp. The ceramic cup may include an external flange about a periphery thereof. One example of a jacketed lamp bulb envelope includes a ceramic cup having an open end and a closed end, a ceramic washer covering the open end of the ceramic cup, the washer defining an aperture therethrough, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material filling an interior volume of the ceramic cup not occupied by the bulb.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: October 30, 2001
    Assignee: Fusion Lighting, Inc.
    Inventors: Donald A. MacLennan, Brian P. Turner, Aleksandr Gitsevich, Gary K. Bass, James T. Dolan, Kent Kipling, Douglas A. Kirkpatrick, Yongzhang Leng, Izrail Levin, Robert J. Roy, Bruce Shanks, Malcolm Smith, William C. Trimble, Peter Tsai
  • Patent number: 6137237
    Abstract: A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management.
    Type: Grant
    Filed: January 11, 1999
    Date of Patent: October 24, 2000
    Assignee: Fusion Lighting, Inc.
    Inventors: Donald A. MacLennan, Brian P. Turner, James T. Dolan, Douglas A. Kirkpatrick, Yongzhang Leng
  • Patent number: 6072268
    Abstract: The spectral energy characteristic of a discharge lamp is controlled by changing the density of the fill substance. The spectral characteristic can be shifted while substantially maintaining its shape by changing the density of the fill. A sulfur or selenium containing discharge lamp which is operated at a pressure of at least about 1 atmosphere contains a low ionization potential substance in the fill. Characteristics which are improved are one or more of spatial color uniformity, extinguishing characteristics, and bulb starting reliability. Particular substances which are added to the fill are alkali metal containing substances, III B metal containing substances, and alkaline earth metal containing substances. When light is reflected back into the bulb, the light which is re-emitted is stronger in the higher wavelengths.
    Type: Grant
    Filed: May 12, 1999
    Date of Patent: June 6, 2000
    Assignee: Fusion Lighting, Inc.
    Inventors: James T. Dolan, Michael G. Ury
  • Patent number: 6020676
    Abstract: The spectral energy characteristic of a discharge lamp is controlled by changing the density of the fill substance. The spectral characteristic can be shifted while substantially maintaining its shape by changing the density of the fill. A sulfur or selenium containing discharge lamp which is operated at a pressure of at least about 1 atmosphere contains a low ionization potential substance in the fill. Characteristics which are improved are one or more of spatial color uniformity, extinguishing characteristics, and bulb starting reliability. Particular substances which are added to the fill are alkali metal containing substances, III B metal containing substances, and alkaline earth metal containing substances. When light is reflected back into the bulb, the light which is re-emitted is stronger in the higher wavelengths.
    Type: Grant
    Filed: June 26, 1998
    Date of Patent: February 1, 2000
    Assignee: Fusion Lighting, Inc.
    Inventors: Michael G. Ury, James T. Dolan
  • Patent number: 5977724
    Abstract: The envelope of an electrodeless lamp which would tend to produce a discharge which does not substantially fill the interior of the envelope if the envelope is not rotated or is rotated at insufficient speed, is rotated at a high enough speed to cause the discharge to substantially fill the interior of the envelope.
    Type: Grant
    Filed: March 3, 1997
    Date of Patent: November 2, 1999
    Assignee: Fusion Lighting, Inc.
    Inventors: James T. Dolan, Charles H. Wood, Michael G. Ury
  • Patent number: 5866980
    Abstract: The spectral energy characteristic of a discharge lamp is controlled by changing the density of the fill substance. The spectral characteristic can be shifted while substantially maintaining its shape by changing the density of the fill. A sulfur or selenium containing discharge lamp which is operated at a pressure of at least about 1 atmosphere contains a low ionization potential substance in the fill. Characteristics which are improved are one or more of spatial color uniformity, extinguishing characteristics, and bulb starting reliability. Particular substances which are added to the fill are alkali metal containing substances, III B metal containing substances, and alkaline earth metal containing substances. When light is reflected back into the bulb, the light which is re-emitted is stronger in the higher wavelengths.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: February 2, 1999
    Assignee: Fusion Lighting, Inc.
    Inventors: James T. Dolan, Michael G. Ury, Charles H. Wood
  • Patent number: 5834895
    Abstract: A lamp for emitting in the visible portion of the spectrum, which utilizes a fill which includes a selenium and/or a sulfur containing substance. The lamp has superior performance characteristics, including long lifetime and excellent color rendition. The bulb may be either electrodeless or electroded, and may contain additives for emphasizing a desired spectral region.
    Type: Grant
    Filed: December 5, 1994
    Date of Patent: November 10, 1998
    Assignee: Fusion Lighting, Inc.
    Inventors: James T. Dolan, Michael G. Ury, Charles H. Wood, Brian Turner
  • Patent number: 5804922
    Abstract: The spectral energy characteristic of a discharge lamp is controlled by changing the density of the fill substance. The spectral characteristic can be shifted while substantially maintaining its shape by changing the density of the fill. A sulfur or selenium containing discharge lamp which is operated at a pressure of at least about 1 atmosphere contains a low ionization potential substance in the fill. Characteristics which are improved are one or more of spatial color uniformity, extinguishing characteristics, and bulb starting reliability. Particular substances which are added to the fill are alkalai metal containing substances, III B metal containing substances, and alkaline earth metal containing substances. When light is reflected back into the bulb, the light which is re-emitted is stronger in the higher wavelengths.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: September 8, 1998
    Assignee: Fusion Lighting, Inc.
    Inventors: James T. Dolan, Michael G. Ury, Charles H. Wood
  • Patent number: 5798611
    Abstract: The spectral energy characteristic of a discharge lamp is controlled by changing the density of the fill substance. The spectral characteristic can be shifted while substantially maintaining its shape by changing the density of the fill. A sulfur or selenium containing discharge lamp which is operated at a pressure of at least about 1 atmosphere contains a low ionization potential substance in the fill. Characteristics which are improved are one or more of spatial color uniformity, extinguishing characteristics, and bulb starting reliability. Particular substances which are added to the fill are alkalai metal containing substances, III B metal containing substances, and alkaline earth metal containing substances. When light is reflected back into the bulb, the light which is re-emitted is stronger in the higher wavelengths.
    Type: Grant
    Filed: November 10, 1993
    Date of Patent: August 25, 1998
    Assignee: Fusion Lighting, Inc.
    Inventors: James T. Dolan, Michael G. Ury, Charles H. Wood, Brian Turner
  • Patent number: 5773918
    Abstract: The spectral energy characteristic of a discharge lamp is controlled by changing the density of the fill substance. The spectral characteristic can be shifted while substantially maintaining its shape by changing the density of the fill. A sulfur or selenium containing discharge lamp which is operated at a pressure of at least about 1 atmosphere contains a low ionization potential substance in the fill. Characteristics which are improved are one or more of spatial color uniformity, extinguishing characteristics, and bulb starting reliability. Particular substances which are added to the fill are alkalai metal containing substances, III B metal containing substances, and alkaline earth metal containing substances. When light is reflected back into the bulb, the light which is re-emitted is stronger in the higher wavelengths.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: June 30, 1998
    Assignee: Fusion Lighting, Inc.
    Inventors: James T. Dolan, Michael G. Ury
  • Patent number: 5757130
    Abstract: A lamp for emitting in the visible portion of the spectrum, which utilizes a fill which includes a selenium and/or a sulfur containing substance. The lamp has superior performance characteristics. Special electrode structures are provided which enhance longevity.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: May 26, 1998
    Assignee: Fusion Lighting, Inc.
    Inventors: James T. Dolan, Michael G. Ury, Charles H. Wood, John F. Waymouth
  • Patent number: 5686793
    Abstract: An excimer lamp utilizing a high pressure fill. The fill includes a halogen at an operating pressure of greater than about 350 torr or the combination of a halogen and a rare gas at a total operating pressure of greater than about 2.5 atmospheres.
    Type: Grant
    Filed: March 25, 1996
    Date of Patent: November 11, 1997
    Assignee: Fusion UV Systems, Inc.
    Inventors: Brian Turner, James T. Dolan
  • Patent number: 5682080
    Abstract: Ignition of an electrodeless lamp, energized by microwave or radio frequency energy, is achieved by disposing an additive material in the lamp envelope along with the primary fill material. In a first embodiment, the additive is at least partially electrically conductive at room temperatures but non-conductive or a vapor at lamp operating temperatures. The preferred additives for this embodiment are mercury sulfide and mercury selenide. In a second embodiment, the additive is a material, such as piezoelectric crystals, that produces sparks in the envelope when the crystals collide with each other, or with other materials, in response to agitation of the envelope. The additive may alternatively build up electrostatic charge by rubbing along the interior surface of the lamp envelope when the envelope is agitated, the charge build up being sufficient to ignite the primary fill material.
    Type: Grant
    Filed: October 30, 1996
    Date of Patent: October 28, 1997
    Assignee: Fusion Lighting, Inc.
    Inventors: James T. Dolan, Brian P. Turner, Michael G. Ury, Charles H. Wood
  • Patent number: 5670842
    Abstract: Ignition of an electrodeless lamp, energized by microwave or radio energy, is achieved by disposing an additive material in the lamp envelope along with the primary fill material. In a first embodiment, the additive is at least partially electrically conductive at room temperatures but non-conductive or a vapor at lamp operating temperatures. The preferred additives for this embodiment are mercury sulfide and mercury selenide. In a second embodiment, the additive is a material, such as piezoelectric crystals, that produces sparks in the envelope when the crystals collide with each other, or with other materials, in response to agitation of the envelope. The additive may alternatively build up electrostatic charge by rubbing along the interior surface of the lamp envelope when the envelope is agitated, the charge build up being sufficient to ignite the primary fill material.
    Type: Grant
    Filed: May 10, 1995
    Date of Patent: September 23, 1997
    Inventors: James T. Dolan, Brian P. Turner, Michael G. Ury, Charles H. Wood
  • Patent number: 5606220
    Abstract: A lamp for providing visible light which utilizes a fill containing selenium and/or sulfur, or compounds of these substances. The lamp is excited such that the excited fill emits radiation from elemental selenium and/or elemental sulfur which is in a continuous band principally within the visible range.
    Type: Grant
    Filed: January 9, 1995
    Date of Patent: February 25, 1997
    Assignee: Fusion Systems Corporation
    Inventors: James T. Dolan, Michael G. Ury, Charles H. Wood
  • Patent number: 5594162
    Abstract: A valve stem gas leak sensor or detector configured to surround a possibly leaking petrochemical or like flow line valve stem and provide for external monitoring equipment an electrical resistance related to the amount of hydrocarbon gas leakage occurring around the valve stem. Such a gas leak detector, termable a ring sensor, is configured as a stem surrounding enclosure, with interconnecting segments for ease of installation around and removability from a valve stem, with one or both of each such segments having an interiorly arranged layer of gas sensor particulate material characterized by change in electrical resistance in the presence of a changing concentration of hydrocarbon gas leakage around a valve stem, and with interengaging connector/conductor pins holding the segments together around the valve stem and across which the electrical resistance of one or both gas sensor material layers can be measured with the ring sensor in place on the valve stem.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: January 14, 1997
    Inventors: James P. Dolan, Patrick M. Dolan, James T. Dolan, Margaret R. Dolan