Patents by Inventor James T. McWhirter

James T. McWhirter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9559023
    Abstract: Systems and methods for reducing beam instability in laser annealing are disclosed. The method includes: directing a conditioned laser beam through an opening in an aperture using a beam-redirecting element; forming a line image on the surface of the semiconductor wafer by imaging the aperture onto the surface, thereby locally heating the surface to form an annealing temperature distribution; detecting a thermal emission from the locally heated wafer surface; determining the annealing temperature distribution from the detected thermal emission; determining from the annealing temperature distribution a line-image intensity profile that includes a time-varying amount of slope; and adjusting the beam-redirecting element to redirect the laser beam to reduce or eliminate the time-varying amount of slope in the line-image intensity profile.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: January 31, 2017
    Assignee: Ultratech, Inc.
    Inventors: James T. McWhirter, Andrew Hawryluk, Serguei Anikitichev, Masoud Safa
  • Publication number: 20160354865
    Abstract: Microchamber laser processing systems and methods that use a localized process-gas atmosphere are disclosed. The method includes processing a substrate with a surface by providing a process gas to a central region of the microchamber that includes the surface of the substrate and providing a curtain gas to a peripheral region of the chamber that includes the surface of the substrate. The method also includes providing a vacuum to a region of the chamber between its central and peripheral regions of the chamber, wherein the vacuum removes the process gas and curtain gas, thereby forming a localized process-gas atmosphere at the surface of the substrate in the central region of the chamber and a gas curtain of the curtain gas in the peripheral region of the chamber. The method also includes irradiating the surface of the substrate through the localized process-gas atmosphere with a laser beam that forms a laser line to perform a laser process on the surface of the substrate.
    Type: Application
    Filed: May 4, 2016
    Publication date: December 8, 2016
    Applicant: Ultratech, Inc.
    Inventor: James T. McWhirter
  • Patent number: 9475150
    Abstract: Systems and methods for performing semiconductor laser annealing using dual loop control are disclosed. The first control loop operates at a first frequency and controls the output of the laser and controls the 1/f laser noise. The second control loop also controls the amount of output power in the laser and operates at second frequency lower than the first frequency. The second control loop measures the thermal emission of the wafer over an area the size of one or more die so that within-die emissivity variations are average out when determining the measured annealing temperature. The measured annealing temperature and an annealing temperature set point are used to generate the control signal for the second control loop.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: October 25, 2016
    Assignee: Ultratech, Inc.
    Inventors: James T. McWhirter, David Gaines, Joseph Lee, Paulo Zambon
  • Publication number: 20150371911
    Abstract: Systems and methods for reducing beam instability in laser annealing are disclosed. The method includes: directing a conditioned laser beam through an opening in an aperture using a beam-redirecting element; forming a line image on the surface of the semiconductor wafer by imaging the aperture onto the surface, thereby locally heating the surface to form an annealing temperature distribution; detecting a thermal emission from the locally heated wafer surface; determining the annealing temperature distribution from the detected thermal emission; determining from the annealing temperature distribution a line-image intensity profile that includes a time-varying amount of slope; and adjusting the beam-redirecting element to redirect the laser beam to reduce or eliminate the time-varying amount of slope in the line-image intensity profile.
    Type: Application
    Filed: June 23, 2014
    Publication date: December 24, 2015
    Applicant: Ultratech, Inc.
    Inventors: James T. McWhirter, Andrew Hawryluk, Serguei Anikitichev, Masoud Safa
  • Patent number: 9029809
    Abstract: A movable microchamber system with a gas curtain is disclosed. The microchamber system has a top member with a light-access feature and a stage assembly that supports a substrate to be processed. The stage assembly is disposed relative to the top member to define a microchamber and a peripheral microchamber gap. An inert gas is flowed into the peripheral microchamber gap to form the gas curtain just outside of the microchamber. The gas curtain substantially prevents reactive gas in the ambient environment from entering the microchamber when the stage assembly moves relative to the top member.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: May 12, 2015
    Assignee: Ultratech, Inc.
    Inventors: Digby Pun, Ali Shajii, Andrew B. Cowe, Raymond Ellis, James T. McWhirter
  • Patent number: 8822353
    Abstract: Systems and methods for forming a time-averaged line image having a relatively high amount of intensity uniformity along its length is disclosed. The method includes forming at an image plane a line image having a first amount of intensity non-uniformity in a long-axis direction and forming a secondary image that at least partially overlaps the primary image. The method also includes scanning the secondary image over at least a portion of the primary image and in the long-axis direction according to a scan profile to form a time-average modified line image having a second amount of intensity non-uniformity in the long-axis direction that is less than the first amount. For laser annealing a semiconductor wafer, the amount of line-image overlap for adjacent scans of a wafer scan path is substantially reduced, thereby increasing wafer throughput.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: September 2, 2014
    Assignee: Ultratech, Inc.
    Inventors: Serguei Anikitchev, James T. McWhirter, Joseph E. Gortych
  • Publication number: 20140166632
    Abstract: Systems and methods for performing semiconductor laser annealing using dual loop control are disclosed. The first control loop operates at a first frequency and controls the output of the laser and controls the 1/f laser noise. The second control loop also controls the amount of output power in the laser and operates at second frequency lower than the first frequency. The second control loop measures the thermal emission of the wafer over an area the size of one or more die so that within-die emissivity variations are average out when determining the measured annealing temperature. The measured annealing temperature and an annealing temperature set point are used to generate the control signal for the second control loop.
    Type: Application
    Filed: February 20, 2014
    Publication date: June 19, 2014
    Applicant: ULTRATECH, INC.
    Inventors: JAMES T. MCWHIRTER, DAVID GAINES, JOSEPH LEE, PAULO ZAMBON
  • Publication number: 20140151344
    Abstract: A movable microchamber system with a gas curtain is disclosed. The microchamber system has a top member with a light-access feature and a stage assembly that supports a substrate to be processed. The stage assembly is disposed relative to the top member to define a microchamber and a peripheral microchamber gap. An inert gas is flowed into the peripheral microchamber gap to form the gas curtain just outside of the microchamber. The gas curtain substantially prevents reactive gas in the ambient environment from entering the microchamber when the stage assembly moves relative to the top member.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Applicant: Ultratech, Inc.
    Inventors: Digby PUN, Ali SHAJII, Andrew B. COWE, Raymond ELLIS, James T. McWHIRTER
  • Patent number: 8691598
    Abstract: Systems and methods for performing semiconductor laser annealing using dual loop control are disclosed. The first control loop operates at a first frequency and controls the output of the laser and controls the 1/f laser noise. The second control loop also controls the amount of output power in the laser and operates at second frequency lower than the first frequency. The second control loop measures the thermal emission of the wafer over an area the size of one or more die so that within-die emissivity variations are average out when determining the measured annealing temperature. The measured annealing temperature and an annealing temperature set point are used to generate the control signal for the second control loop.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: April 8, 2014
    Assignee: Ultratech, Inc.
    Inventors: James T. McWhirter, David Gaines, Joseph Lee, Paolo Zambon
  • Patent number: 8399808
    Abstract: Systems and methods for forming a time-average line image are disclosed. The method includes forming a line image with a first amount of intensity non-uniformity. The method also includes forming and scanning a secondary image over at least a portion of the line image to form a time-averaged modified line image having a second amount of intensity non-uniformity that is less than the first amount. Wafer emissivity is measured in real time to control the intensity of the secondary image. Temperature is also measured in real time based on the wafer emissivity and reflectivity of the secondary image, and can be used to control the intensity of the secondary image.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: March 19, 2013
    Assignee: Ultratech, Inc.
    Inventors: Serguei Anikitchev, James T. McWhirter, Joseph E. Gortych
  • Publication number: 20120111838
    Abstract: Provided are apparatuses and method for the thermal processing of a substrate surface, e.g., controlled laser thermal annealing (LTA) of substrates. The invention typically involves irradiating the substrate surface with first and second images to process regions of the substrate surface at a substantially uniform peak processing temperature along a scan path. A first image may serve to effect spike annealing of the substrates while another may be used to provide auxiliary heat treatment to the substrates before and/or after the spike annealing. Control over the temperature profile of the prespike and/or postspike may also reduce stresses and strains generated in the wafers. Also provided are microelectronic devices formed using the inventive apparatuses and methods.
    Type: Application
    Filed: January 10, 2012
    Publication date: May 10, 2012
    Applicant: Ultratech, Inc.
    Inventors: Arthur W. Zafiropoulo, Andrew M. Hawryluk, James T. McWhirter, Serguei G. Anikitchev
  • Publication number: 20120100728
    Abstract: Systems and methods for forming a time-averaged line image having a relatively high amount of intensity uniformity along its length is disclosed. The method includes forming at an image plane a line image having a first amount of intensity non-uniformity in a long-axis direction and forming a secondary image that at least partially overlaps the primary image. The method also includes scanning the secondary image over at least a portion of the primary image and in the long-axis direction according to a scan profile to form a time-average modified line image having a second amount of intensity non-uniformity in the long-axis direction that is less than the first amount. For laser annealing a semiconductor wafer, the amount of line-image overlap for adjacent scans of a wafer scan path is substantially reduced, thereby increasing wafer throughput.
    Type: Application
    Filed: August 17, 2011
    Publication date: April 26, 2012
    Inventors: Serguei Anikitchev, James T. McWhirter, Joseph E. Gortych
  • Publication number: 20120100640
    Abstract: Systems and methods for forming a time-average line image are disclosed. The method includes forming a line image with a first amount of intensity non-uniformity. The method also includes forming and scanning a secondary image over at least a portion of the line image to form a time-averaged modified line image having a second amount of intensity non-uniformity that is less than the first amount. Wafer emissivity is measured in real time to control the intensity of the secondary image. Temperature is also measured in real time based on the wafer emissivity and reflectivity of the secondary image, and can be used to control the intensity of the secondary image.
    Type: Application
    Filed: August 10, 2011
    Publication date: April 26, 2012
    Inventors: Serguei Anikitchev, James T. McWhirter, Joseph E. Gortych
  • Publication number: 20110298093
    Abstract: Provided are apparatuses and method for the thermal processing of a substrate surface, e.g., controlled laser thermal annealing (LTA) of substrates. The invention typically involves irradiating the substrate surface with first and second images to process regions of the substrate surface at a substantially uniform peak processing temperature along a scan path. A first image may serve to effect spike annealing of the substrates while another may be used to provide auxiliary heat treatment to the substrates before and/or after the spike annealing. Control over the temperature profile of the prespike and/or postspike may also reduce stresses and strains generated in the wafers. Also provided are microelectronic devices formed using the inventive apparatuses and methods.
    Type: Application
    Filed: August 15, 2011
    Publication date: December 8, 2011
    Applicant: ULTRATECH, INC.
    Inventors: Arthur W. Zafiropoulo, Andrew M. Hawryluk, James T. McWhirter, Serguei G. Anikitchev
  • Patent number: 8026519
    Abstract: Systems and methods for forming a time-averaged line image having a relatively high amount of intensity uniformity along its length is disclosed. The method includes forming at an image plane a line image having a first amount of intensity non-uniformity in a long-axis direction and forming a secondary image that at least partially overlaps the primary image. The method also includes scanning the secondary image over at least a portion of the primary image and in the long-axis direction according to a scan profile to form a time-average modified line image having a second amount of intensity non-uniformity in the long-axis direction that is less than the first amount. For laser annealing a semiconductor wafer, the amount of line-image overlap for adjacent scans of a wafer scan path is substantially reduced, thereby increasing wafer throughput.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: September 27, 2011
    Assignee: Ultratech, Inc.
    Inventors: Serguei Anikitchev, James T. McWhirter, Joseph E. Gortych
  • Publication number: 20100084744
    Abstract: Provided are apparatuses and method for the thermal processing of a substrate surface, e.g., controlled laser thermal annealing (LTA) of substrates. The invention typically involves irradiating the substrate surface with first and second images to process regions of the substrate surface at a substantially uniform peak processing temperature along a scan path. A first image may serve to effect spike annealing of the substrates while another may be used to provide auxiliary heat treatment to the substrates before and/or after the spike annealing. Control over the temperature profile of the prespike and/or postspike may also reduce stresses and strains generated in the wafers. Also provided are microelectronic devices formed using the inventive apparatuses and methods.
    Type: Application
    Filed: October 6, 2008
    Publication date: April 8, 2010
    Inventors: Arthur W. Zafiropoulo, Andrew M. Hawryluk, James T. McWhirter, Serguei G. Anikitchev
  • Patent number: 7190441
    Abstract: Methods and systems for preparing a sample for thin film analysis are provided. One system includes an energy beam source configured to generate an energy beam. The system also includes an energy beam delivery subsystem configured to direct the energy beam to a sample and to modify the energy beam such that the energy beam has a substantially flat-top profile on the sample. The energy beam removes a portion of a contaminant layer on the sample to expose an analysis area of a thin film on the sample. One method includes generating an energy beam and modifying the energy beam such that the energy beam has a substantially flat-top profile. The method also includes directing the energy beam to a sample. The energy beam removes a portion of a contaminant layer on the sample to expose an analysis area of a thin film on the sample.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: March 13, 2007
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: James T. McWhirter, Liang-Guo Wang, Hidong Kwak, Haixing Zou, Dan Georgesco, Bernard Lautee, Jennming James Chen, Gary R. Janik, Patrick M. Maxton