Patents by Inventor James W. Dell

James W. Dell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090275432
    Abstract: A tensioner assembly with a drive member, a tensioner arm, a shaft, a pivot bushing, a torsion spring and a load balancing element. The tensioner arm has a hub portion, a drive member mount and an arm disposed therebetween. The drive member is coupled to the drive member mount. The shaft is mounted coaxially within the hub portion. The pivot bushing has a frustoconical bearing surface, which engages a corresponding frustoconical surface in the hub portion, and is slidably mounted on the shaft. The torsion spring is received between the shaft and an outer wall of the hub portion and biases the tensioner arm about the shaft in a predetermined rotational direction. The load balancing element is received between and abuts the outer wall and the torsion spring to transmit a radially outwardly directed force generated by the torsion spring to the outer wall at a predetermined location.
    Type: Application
    Filed: April 30, 2009
    Publication date: November 5, 2009
    Inventor: James W. DELL
  • Patent number: 7591357
    Abstract: A decoupler (22) is provided for transferring rotary movement between an engine driven crankshaft (16) and a serpentine belt (20). The decoupler (22) has a rotary driving member (18, 36) and a rotary driven member (36, 18) coaxially mounted with the driving member for relative rotary movement therewith. A decoupling assembly (19) extends between the driving member (18, 36) and the driven member (36, 18). The decoupling assembly (19) selectively couples the driving and driven members (18, 36) when the driving member rotates relative to the driven member in a first coupling sense. The decoupling assembly (19) uncouples the driving member from the driven member when the driving member rotates relative to the driven member in a second sense opposite the first sense. A torsional vibration damper (80) is mounted for rotation with one of the driving and driven members (18, 36) to cancel some of the vibrations generated by the engine.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: September 22, 2009
    Inventors: John Antchak, James W. Dell, Bert Mevissen
  • Publication number: 20090176583
    Abstract: A one way isolator for high torque devices, such as alternator-starters, driven by a flexible drive means includes a hub and a sheave each of which includes at least one stop member. The hub and sheave are linked by a isolating spring and, via a bearing and/or bushing, can rotate with respect to each other to provide isolation, through the spring, from torque variations when torque is transferred from the flexible drive means to the device. When substantial amounts of torque are transferred from the device to the flexible drive means, the sheave rotates with respect to the hub to bring the stop members into contact such that the isolator then acts like a solid pulley to facilitate the transfer of the torque from the device.
    Type: Application
    Filed: April 26, 2007
    Publication date: July 9, 2009
    Inventors: James W. Dell, John R. Antchak, Trevor S. Smith
  • Publication number: 20080220919
    Abstract: A tensioner operable to substantially maintain a specified tension in a flexible drive, such as a belt or chain, includes a spring, mounted laterally to the pivot shaft of the tensioner, which biases the tensioner arm towards the flexible drive. The spring is arcuate in shape and is maintained in a correspondingly arc-shaped spring retainer on a mounting plate of the tensioner. The arcuate shape of the spring and spring guide on the tensioner arm follows as the tensioner arm pivots towards and away from the flexible drive. The tensioner also has a wear take up mechanism to maintain the friction bushing in continuous engagement with the tensioner arm.
    Type: Application
    Filed: August 30, 2006
    Publication date: September 11, 2008
    Inventors: John R. Antchak, James W. Dell, Hubertus G. Mevissen
  • Publication number: 20080194366
    Abstract: A novel tensioner for use with flexible drives, such as serpentine accessory belts on automobiles includes a tensioner arm to spindle pivot design which employs a frustoconical bushing between an inner pivot surface of the tensioner arm and a spindle shaft. The frustoconical design of the bushing resists off axis movement of the tensioner arm and a wear take up mechanism biases the bushing into contact with the inner pivot surface to compensate for normal wear of the bushing and/or pivot surface. A thrust plate is mounted to the end of the spindle shaft and rides in a thrust washer, the thrust plate and thrust washer being held captive in the tensioner arm such that the tensioner arm can pivot about the bushing and the spindle and the thrust plate and thrust washer assist in inhibiting off-axis movement of the tensioner arm. In one embodiment, the biasing force which biases the bushing against the inner pivot surface of the tensioner arm can be varied to change the amount of dampening of the tensioner.
    Type: Application
    Filed: March 20, 2006
    Publication date: August 14, 2008
    Inventors: Hubertus G. Mevissen, James W. Dell
  • Patent number: 7207910
    Abstract: A decoupler for an alternator pulley in a serpentine drive system has a resilient, helical spring member that couples the alternator pulley with a hub structure through a spring retaining member. A bushing is disposed between the spring retaining member and the hub structure to facilitate sliding engagement therebetween. An annular sleeve member is disposed between the spring member and the alternator pulley to facilitate sliding engagement therebetween. The spring member is connected at one end thereof to the hub structure and connected at an opposite end thereof to the spring retaining member. The resilient spring member transmits the driven rotational movements of the alternator pulley by the serpentine belt to the hub structure such that the alternator shaft is rotated in the same direction as the alternator pulley while being capable of instantaneous relative resilient movements in opposite directions with respect to the alternator pulley during the driven rotational movement.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: April 24, 2007
    Assignee: Litens Automotive
    Inventors: James W. Dell, Bert Mevissen
  • Patent number: 7153227
    Abstract: A decoupler for an alternator pulley in a serpentine drive system has a resilient, helical spring member that couples the alternator pulley with a hub structure through a spring retaining member. A bushing is disposed between the spring retaining member and the hub structure to facilitate sliding engagement therebetween. An annular sleeve member is disposed between the spring member and the alternator pulley to facilitate sliding engagement therebetween. The spring member is connected at one end thereof to the hub structure and connected at an opposite end thereof to the spring retaining member. The resilient spring member transmits the driven rotational movements of the alternator pulley by the serpentine belt to the hub structure such that the alternator shaft is rotated in the same direction as the alternator pulley while being capable of instantaneous relative resilient movements in opposite directions with respect to the alternator pulley during the driven rotational movement.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: December 26, 2006
    Assignee: Litens Automotive
    Inventors: James W. Dell, Bert Mevissen
  • Publication number: 20040014540
    Abstract: A decoupler for an alternator pulley in a serpentine drive system has a resilient, helical spring member that couples the alternator pulley with a hub structure through a spring retaining member. A bushing is disposed between the spring retaining member and the hub structure to facilitate sliding engagement therebetween. An annular sleeve member is disposed between the spring member and the alternator pulley to facilitate sliding engagement therebetween. The spring member is connected at one end thereof to the hub structure and connected at an opposite end thereof to the spring retaining member. The resilient spring member transmits the driven rotational movements of the alternator pulley by the serpentine belt to the hub structure such that the alternator shaft is rotated in the same direction as the alternator pulley while being capable of instantaneous relative resilient movements in opposite directions with respect to the alternator pulley during the driven rotational movement.
    Type: Application
    Filed: April 18, 2003
    Publication date: January 22, 2004
    Inventors: James W. Dell, Bert Mevissen