Patents by Inventor James W. Furlong

James W. Furlong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10451351
    Abstract: In one embodiment, a cooling system may include a thermosyphon cooler that cools a cooling fluid through dry cooling and a cooling tower that cools a cooling fluid through evaporative cooling. The thermosyphon cooler may use natural convection to circulate a refrigerant between a shell and tube evaporator and an air cooled condenser. The thermosyphon cooler may be located in the cooling system upstream of, and in series with, the cooling tower, and may be operated when the thermosyphon cooler is more economically and/or resource efficient to operate than the cooling tower. According to certain embodiments, factors, such as the ambient temperature, the cost of electricity, and the cost of water, among others, may be used to determine whether to operate the thermosyphon cooler, the cooling tower, or both.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: October 22, 2019
    Assignee: Johnson Controls Technology Company
    Inventors: James W. Furlong, Joseph W. Pillis, Delmar E. Lehman
  • Patent number: 10302363
    Abstract: In one embodiment, a cooling system includes a thermosyphon cooler that cools a cooling fluid through dry cooling and a cooling tower that cools a cooling fluid through evaporative cooling. The thermosyphon cooler uses natural convection to circulate a refrigerant between a shell and tube evaporator and an air cooled condenser. The thermosyphon cooler is located in the cooling system upstream of, and in series with, the cooling tower, and is operated when the thermosyphon cooler is more economically and/or resource efficient to operate than the cooling tower. According to certain embodiments, factors, such as the ambient temperature, the cost of electricity, and the cost of water, among others, are used to determine whether to operate the thermosyphon cooler, the cooling tower, or both.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: May 28, 2019
    Assignee: Johnson Controls Technology Company
    Inventors: James W. Furlong, Joseph W. Pillis, Delmar E. Lehman
  • Patent number: 10295262
    Abstract: In one embodiment, a cooling system includes a thermosyphon cooler that cools a cooling fluid through dry cooling and a cooling tower that cools a cooling fluid through evaporative cooling. The thermosyphon cooler uses natural convection to circulate a refrigerant between a shell and tube evaporator and an air cooled condenser. The thermosyphon cooler is located in the cooling system upstream of, and in series with, the cooling tower, and is operated when the thermosyphon cooler is more economically and/or resource efficient to operate than the cooling tower. According to certain embodiments, factors, such as the ambient temperature, the cost of electricity, and the cost of water, among others, are used to determine whether to operate the thermosyphon cooler, the cooling tower, or both.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: May 21, 2019
    Assignee: Johnson Controls Technology Company
    Inventors: James W. Furlong, Joseph W. Pillis, Delmar E. Lehman
  • Patent number: 9939201
    Abstract: In one embodiment, a cooling system may include a thermosyphon cooler that cools a cooling fluid through dry cooling and a cooling tower that cools a cooling fluid through evaporative cooling. The thermosyphon cooler may use natural convection to circulate a refrigerant between a shell and tube evaporator and an air cooled condenser. The thermosyphon cooler may be located in the cooling system upstream of, and in series with, the cooling tower, and may be operated when the thermosyphon cooler is more economically and/or resource efficient to operate than the cooling tower. According to certain embodiments, factors, such as the ambient temperature, the cost of electricity, and the cost of water, among others, may be used to determine whether to operate the thermosyphon cooler, the cooling tower, or both.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: April 10, 2018
    Assignee: Johnson Controls Technology Company
    Inventors: James W. Furlong, Joseph W. Pillis, Delmar E. Lehman
  • Publication number: 20160348978
    Abstract: In one embodiment, a cooling system may include a thermosyphon cooler that cools a cooling fluid through dry cooling and a cooling tower that cools a cooling fluid through evaporative cooling. The thermosyphon cooler may use natural convection to circulate a refrigerant between a shell and tube evaporator and an air cooled condenser. The thermosyphon cooler may be located in the cooling system upstream of, and in series with, the cooling tower, and may be operated when the thermosyphon cooler is more economically and/or resource efficient to operate than the cooling tower. According to certain embodiments, factors, such as the ambient temperature, the cost of electricity, and the cost of water, among others, may be used to determine whether to operate the thermosyphon cooler, the cooling tower, or both.
    Type: Application
    Filed: August 8, 2016
    Publication date: December 1, 2016
    Inventors: James W. Furlong, Joseph W. Pillis, Delmar E. Lehman
  • Publication number: 20160348979
    Abstract: In one embodiment, a cooling system may include a thermosyphon cooler that cools a cooling fluid through dry cooling and a cooling tower that cools a cooling fluid through evaporative cooling. The thermosyphon cooler may use natural convection to circulate a refrigerant between a shell and tube evaporator and an air cooled condenser. The thermosyphon cooler may be located in the cooling system upstream of, and in series with, the cooling tower, and may be operated when the thermosyphon cooler is more economically and/or resource efficient to operate than the cooling tower. According to certain embodiments, factors, such as the ambient temperature, the cost of electricity, and the cost of water, among others, may be used to determine whether to operate the thermosyphon cooler, the cooling tower, or both.
    Type: Application
    Filed: August 8, 2016
    Publication date: December 1, 2016
    Inventors: James W. Furlong, Joseph W. Pillis, Delmar E. Lehman
  • Publication number: 20160348977
    Abstract: In one embodiment, a cooling system may include a thermosyphon cooler that cools a cooling fluid through dry cooling and a cooling tower that cools a cooling fluid through evaporative cooling. The thermosyphon cooler may use natural convection to circulate a refrigerant between a shell and tube evaporator and an air cooled condenser. The thermosyphon cooler may be located in the cooling system upstream of, and in series with, the cooling tower, and may be operated when the thermosyphon cooler is more economically and/or resource efficient to operate than the cooling tower. According to certain embodiments, factors, such as the ambient temperature, the cost of electricity, and the cost of water, among others, may be used to determine whether to operate the thermosyphon cooler, the cooling tower, or both.
    Type: Application
    Filed: August 8, 2016
    Publication date: December 1, 2016
    Inventors: James W. Furlong, Joseph W. Pillis, Delmar E. Lehman
  • Patent number: 8931158
    Abstract: A liner and method of application for use on a metal surface to protect metal structures such as cooling towers, evaporative condensers, and other liquid containing vessels such as tanks from corrosion, leaks, and wear. The liner is an inexpensive apparatus and process comprising a coated metal having a second sealing and bonding layer and a third protective sealing layer. The liner method comprises applying an organic bonding layer onto the galvanized substrate, and applying an elastomeric barrier coating to the bonding layer. The barrier coating material is applied to preseal the seams between adjoining panels assembled to form the basin. The barrier coating is applied to the entire inside of the basin to form a homogenous barrier coating extending out of the basin. The liner edge is isolated from the basin by extending the liner to a point between the basin and an upper section.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: January 13, 2015
    Assignee: Baltimore Aircoil Company, Inc.
    Inventors: Frank T. Morrison, Greg M. Lowman, John R. Hawkins, James W. Furlong
  • Publication number: 20110289951
    Abstract: In one embodiment, a cooling system may include a thermosyphon cooler that cools a cooling fluid through dry cooling and a cooling tower that cools a cooling fluid through evaporative cooling. The thermosyphon cooler may use natural convection to circulate a refrigerant between a shell and tube evaporator and an air cooled condenser. The thermosyphon cooler may be located in the cooling system upstream of, and in series with, the cooling tower, and may be operated when the thermosyphon cooler is more economically and/or resource efficient to operate than the cooling tower. According to certain embodiments, factors, such as the ambient temperature, the cost of electricity, and the cost of water, among others, may be used to determine whether to operate the thermosyphon cooler, the cooling tower, or both.
    Type: Application
    Filed: May 27, 2011
    Publication date: December 1, 2011
    Applicant: Johnson Controls Technology Company
    Inventors: James W. Furlong, Joseph W. Pillis, Delmar E. Lehman
  • Publication number: 20110117285
    Abstract: A liner and method of application for use on a metal surface to protect metal structures such as cooling towers, evaporative condensers, and other liquid containing vessels such as tanks from corrosion, leaks, and wear. The liner is an inexpensive apparatus and process comprising a coated metal having a second sealing and bonding layer and a third protective sealing layer. The liner method comprises applying an organic bonding layer onto the galvanized substrate, and applying an elastomeric barrier coating to the bonding layer. The barrier coating material is applied to preseal the seams between adjoining panels assembled to form the basin. The barrier coating is applied to the entire inside of the basin to form a homogenous barrier coating extending out of the basin. The liner edge is isolated from the basin by extending the liner to a point between the basin and an upper section.
    Type: Application
    Filed: January 25, 2011
    Publication date: May 19, 2011
    Inventors: Frank T. Morrison, Greg M. Lowman, John R. Hawkins, James W. Furlong
  • Publication number: 20070289966
    Abstract: A liner and method of application for use on a metal surface to protect metal structures such as cooling towers, evaporative condensers, and other liquid containing vessels such as tanks from corrosion, leaks, and wear. The liner is an inexpensive apparatus and process comprising a coated metal having a second sealing and bonding layer and a third protective sealing layer. The liner method comprises applying an organic bonding layer onto the galvanized substrate, and applying an elastomeric barrier coating to the bonding layer. The barrier coating material is applied to preseal the seams between adjoining panels assembled to form the basin. The barrier coating is applied to the entire inside of the basin to form a homogenous barrier coating extending out of the basin. The liner edge is isolated from the basin by extending the liner to a point between the basin and an upper section.
    Type: Application
    Filed: June 16, 2006
    Publication date: December 20, 2007
    Inventors: Frank T. Morrison, Greg M. Lowman, John R. Hawkins, James W. Furlong