Patents by Inventor James William Kretchmer

James William Kretchmer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10269951
    Abstract: A semiconductor device is provided. The semiconductor device includes a semiconductor device layer having silicon carbide and having an upper surface and a lower surface. The semiconductor device also includes a heavily doped body region formed in the upper surface of the semiconductor device layer. The semiconductor device further includes a gate stack formed adjacent to and on top of the upper surface of the semiconductor device layer, wherein the gate stack is not formed adjacent to the heavily doped body region.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: April 23, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Peter Almern Losee, Alexander Bolotnikov, Stacey Joy Kennerly, James William Kretchmer
  • Publication number: 20180337273
    Abstract: A semiconductor device is provided. The semiconductor device includes a semiconductor device layer having silicon carbide and having an upper surface and a lower surface. The semiconductor device also includes a heavily doped body region formed in the upper surface of the semiconductor device layer. The semiconductor device further includes a gate stack formed adjacent to and on top of the upper surface of the semiconductor device layer, wherein the gate stack is not formed adjacent to the heavily doped body region.
    Type: Application
    Filed: May 16, 2017
    Publication date: November 22, 2018
    Inventors: Peter Almern Losee, Alexander Bolotnikov, Stacey Joy Kennerly, James William Kretchmer
  • Publication number: 20160307997
    Abstract: A semiconductor device may include a substrate comprising silicon carbide; a drift layer disposed over the substrate doped with a first dopant type; an anode region disposed adjacent to the drift layer, wherein the anode region is doped with a second dopant type; and a junction termination extension disposed adjacent to the anode region and extending around the anode region, wherein the junction termination extension has a width and comprises a plurality of discrete regions separated in a first direction and in a second direction and doped with varying concentrations with the second dopant type, so as to have an effective doping profile of the second conductivity type of a functional form that generally decreases along a direction away from an edge of the primary blocking junction.
    Type: Application
    Filed: June 28, 2016
    Publication date: October 20, 2016
    Inventors: Stephen Daley Arthur, Alexander Viktorovich Bolotnikov, Peter Almern Losee, Kevin Sean Motocha, Richard Joseph Saia, Zachary Matthew Stum, Ljuibisa Dragolijub Stevanovic, Kuna Venkat Satya Rama Kishore, James William Kretchmer
  • Patent number: 9406762
    Abstract: A semiconductor device includes a substrate including silicon carbide; a drift layer disposed over the substrate including a drift region doped with a first dopant and conductivity type; and a second region, doped with a second dopant and conductivity type, adjacent to the drift region and proximal to a surface of the drift layer. The semiconductor device further includes a junction termination extension adjacent to the second region with a width and discrete regions separated in a first and second direction doped with varying concentrations of the second dopant type, and an effective doping profile of the second conductivity type of functional form that generally decreases away from the edge of the primary blocking junction. The width is less than or equal to a multiple of five times the width of the one-dimensional depletion width, and the charge tolerance of the semiconductor device is greater than 1.0×1013 per cm2.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: August 2, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Stephen Daley Arthur, Alexander Viktorovich Bolotnikov, Peter Almern Losee, Kevin Sean Matocha, Richard Joseph Saia, Zachary Matthew Stum, Ljubisa Dragoljub Stevanovic, Kuna Venkat Satya Rama Kishore, James William Kretchmer
  • Publication number: 20150115284
    Abstract: A semiconductor device includes a substrate including silicon carbide; a drift layer disposed over the substrate including a drift region doped with a first dopant and conductivity type; and a second region, doped with a second dopant and conductivity type, adjacent to the drift region and proximal to a surface of the drift layer. The semiconductor device further includes a junction termination extension adjacent to the second region with a width and discrete regions separated in a first and second direction doped with varying concentrations of the second dopant type, and an effective doping profile of the second conductivity type of functional form that generally decreases away from the edge of the primary blocking junction. The width is less than or equal to a multiple of five times the width of the one-dimensional depletion width, and the charge tolerance of the semiconductor device is greater than 1.0×1013 per cm2.
    Type: Application
    Filed: May 15, 2013
    Publication date: April 30, 2015
    Inventors: Stephen Daley Arthur, Alexander Viktorovich Bolotnikov, Peter Almern Losee, Kevin Sean Matocha, Richard Joseph Saia, Zachary Matthew Stum, Ljubisa Dragoljub Stevanovic, Kuna Venkat Satya Rama Kishore, James William Kretchmer
  • Publication number: 20100117188
    Abstract: A method for fabricating a trench in a SiC or GaN semiconductor wafer is provided. The method may include filling the trench with a conformal layer of electrically and/or optically isolating material. A device is also provided.
    Type: Application
    Filed: March 5, 2007
    Publication date: May 13, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Peter Wilson Waldrab, James William Kretchmer, Jason David Galea
  • Patent number: 7285433
    Abstract: The invention is directed to a method for optical and electrical isolation between adjacent integrated devices. The method comprises the steps of forming at least one trench through an exposed surface of a semiconductor wafer by removing a portion of the semiconductor wafer material, forming an electrically insulating layer on the sidewalls and the bottom of the at least one trench, filling the at least one trench by conformally depositing an optically isolating material, and planarizing the semiconductor wafer surface by removing the portion of the optically isolating material above the exposed surface of the semiconductor wafer.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: October 23, 2007
    Assignee: General Electric Company
    Inventors: James William Kretchmer, Jeffrey Bernard Fedison, Dal Marius Brown, Peter Micah Sandvik
  • Patent number: 6191458
    Abstract: A depletion mode MOSFET and resistor are fabricated as a silicon carbide (SiC) integrated circuit (IC). The SiC IC includes a first SiC layer doped to a first conductivity type and a second SiC layer overlaid on the first SiC layer and doped to a second conductivity type. The second SiC layer includes at least four more heavily doped regions of the second conductivity type, with two of such regions comprising MOSFET source and drain electrodes and two other of such regions comprising resistor electrodes. The second SiC layer includes an isolation trench between the MOSFET electrodes and the resistor electrodes. At least two electrically conductive contacts are provided as MOSFET electrode contacts, each being positioned over at least a portion of a respective MOSFET electrode and two other electrically conductive contacts are provided as resistor electrode contacts, each being positioned over at least a portion of a respective resistor electrode.
    Type: Grant
    Filed: March 11, 1996
    Date of Patent: February 20, 2001
    Assignee: General Electric Company
    Inventors: Dale Marius Brown, Gerald John Michon, Vikram Bidare Krishnamurthy, James William Kretchmer
  • Patent number: 5814859
    Abstract: A semiconductor device includes a semiconductor substrate having an epitaxial layer surface opposite a drain contact surface; a semiconductor layer adjacent to the epitaxial layer surface of the substrate, the semiconductor layer including material of a first conductivity type; a patterned refractory dielectric layer adjacent to the semiconductor layer; a base region of implanted ions in the semiconductor layer, the base region being of a second conductivity type; a source region of implanted ions in the base region, the source region being of the first conductivity type; a gate insulator layer adjacent to at least a portion of the source and base regions of the semiconductor layer; and a gate electrode over a portion of the gate insulator layer, adjacent to and in physical contact with an outer edge of the patterned refractory dielectric layer, and over at least a portion of the base region between the source region and the patterned refractory dielectric layer.
    Type: Grant
    Filed: November 15, 1995
    Date of Patent: September 29, 1998
    Assignee: General Electric Company
    Inventors: Mario Ghezzo, Tat-Sing Paul Chow, James William Kretchmer, Richard Joseph Saia, William Andrew Hennessy