Patents by Inventor James William Sears

James William Sears has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11155034
    Abstract: According to some embodiments, system and methods are provided comprising generating a nominal computer-aided design (CAD) image of a component; producing a physical representation of the component from the nominal CAD image using an additive manufacturing (AM) process; measuring the physical component to obtain measurement data; determining a deviation between geometry associated with the nominal CAD image and the obtained measurement data; determining a compensation field for the deviation, if the deviation is outside of a tolerance threshold; modifying the nominal CAD image by the compensation field; and producing a physical representation of the component from the modified nominal CAD image. Numerous other aspects are provided.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: October 26, 2021
    Assignee: General Electric Company
    Inventors: Pinghai Yang, James William Sears, Steven Charles Woods, Michael Evans Graham
  • Publication number: 20210268789
    Abstract: A method of forming a build in a powder bed includes emitting a plurality of laser beams from selected fibers of a diode laser fiber array onto the powder bed, the selected fibers of the array corresponding to a pattern of a layer of the build; and simultaneously melting powder in the powder bed corresponding to the pattern of the layer of the build.
    Type: Application
    Filed: May 7, 2021
    Publication date: September 2, 2021
    Inventors: Marshall Gordon Jones, William Thomas Carter, James William Sears
  • Patent number: 11027536
    Abstract: A method of forming a build in a powder bed includes emitting a plurality of laser beams from selected fibers of a diode laser fiber array onto the powder bed, the selected fibers of the array corresponding to a pattern of a layer of the build; and simultaneously melting powder in the powder bed corresponding to the pattern of the layer of the build.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: June 8, 2021
    Assignee: General Electric Company
    Inventors: Marshall Gordon Jones, William Thomas Carter, James William Sears
  • Publication number: 20210142933
    Abstract: A powder including a plurality of particulates, each particulate including a soft magnetic metallic core coated with a continuous dielectric coating having a thickness selected from a range of 100 nanometers to 100 micrometers. The particulates have a mean particle size selected from a range of 100 nanometers to 250 micrometers. Methods for forming the powder are disclosed. A soft magnetic composite component includes a soft magnetic material in a dielectric matrix, wherein (i) the soft magnetic material comprises a plurality of particulates comprising metallic cores, (ii) each metallic core is coated by a continuous dielectric coating covering >90% of a surface area of the metallic core, (iii) the metallic cores are electrically isolated from each other, and (iv) the dielectric coatings of adjacent metallic cores are consolidated together. Methods for formation of the soft magnetic component by additive manufacturing and hot isostatic pressing are disclosed.
    Type: Application
    Filed: November 10, 2020
    Publication date: May 13, 2021
    Inventors: Francis William Herbert, Chins Chinnasamy, James William Sears, Christopher Phillip Allen, Jaydip Das, Nir Vaks
  • Patent number: 10744562
    Abstract: Adaptively forming a three-dimensional component may include providing a plurality of electron beam sources, and simultaneously controlling the plurality of electron beam sources to direct a plurality of electron beams onto a plurality of deposited layers of metallic powder to sequentially consolidate patterned portions of the plurality of deposited metallic powder layers to adaptively form the three-dimensional component.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: August 18, 2020
    Assignee: General Electric Company
    Inventors: Mark Alan Frontera, Vasile Bogdan Neculaes, James William Sears, Peter Andras Zavodszky
  • Publication number: 20200223212
    Abstract: A method of forming a build in a powder bed includes emitting a plurality of laser beams from selected fibers of a diode laser fiber array onto the powder bed, the selected fibers of the array corresponding to a pattern of a layer of the build; and simultaneously melting powder in the powder bed corresponding to the pattern of the layer of the build.
    Type: Application
    Filed: January 15, 2020
    Publication date: July 16, 2020
    Inventors: Marshall Gordon Jones, William Thomas Carter, James William Sears
  • Patent number: 10674101
    Abstract: An imaging device for an additive manufacturing system is provided. The additive manufacturing system includes a material. The imaging device includes a high resolution imaging bar including at least one detector array, and an imaging element positioned between the at least one detector array and the material. The high resolution imaging bar is displaced from the material along a first direction and extends along a second direction. The high resolution imaging bar is configured to generate an image of a build layer within the material.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: June 2, 2020
    Assignee: General Electric Company
    Inventors: Kevin George Harding, Jason Harris Karp, James William Sears
  • Patent number: 10583530
    Abstract: A component is fabricated in a powder bed by moving a laser array across the powder bed. The laser array includes a plurality of laser devices. The power output of each laser device of the plurality of laser devices is independently controlled. The laser array emits a plurality of energy beams from a plurality of selected laser devices of the plurality of laser devices to generate a melt pool in the powder bed. A non-uniform energy intensity profile is generated by the plurality of selected laser devices. The non-uniform energy intensity profile facilitates generating a melt pool that has a predetermined characteristic.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: March 10, 2020
    Assignee: General Electric Company
    Inventors: Jason Harris Karp, Justin John Gambone, Jr., Michael Evans Graham, David Charles Bogdan, Jr., Victor Petrovich Ostroverkhov, William Thomas Carter, Harry Kirk Mathews, Jr., Kevin George Harding, Jinjie Shi, Marshall Gordon Jones, James William Sears
  • Patent number: 10569525
    Abstract: A method of forming a build in a powder bed includes emitting a plurality of laser beams from selected fibers of a diode laser fiber array onto the powder bed, the selected fibers of the array corresponding to a pattern of a layer of the build; and simultaneously melting powder in the powder bed corresponding to the pattern of the layer of the build.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: February 25, 2020
    Assignee: General Electric Company
    Inventors: Marshall Gordon Jones, William Thomas Carter, James William Sears
  • Patent number: 10533901
    Abstract: An imaging system includes a sight tube extending along a longitudinal axis of the imaging system and configured to extend through an access port. The sight tube includes a wall extending about the longitudinal axis and defining a cavity. The imaging system also includes a plurality of cooling channels extending through the sight tube. The plurality of cooling channels are configured to direct cooling fluid through the sight tube for cooling the imaging system. The plurality of cooling channels are formed in the sight tube such that at least one cooling channel of the plurality of cooling channels extends in a direction oblique to the longitudinal axis.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: January 14, 2020
    Assignee: General Electric Company
    Inventors: Guanghua Wang, Nirm Velumylum Nirmalan, Mohamed Sakami, Thomas Charles Adcock, Jeffrey Jay Porubcan, James William Sears, Naveenan Thiagarajan, Bernard Bewlay, Jason Edward Dees, James DeLancey
  • Publication number: 20190283392
    Abstract: A method of forming a build in a powder bed includes emitting a plurality of laser beams from selected fibers of a diode laser fiber array onto the powder bed, the selected fibers of the array corresponding to a pattern of a layer of the build; and simultaneously melting powder in the powder bed corresponding to the pattern of the layer of the build.
    Type: Application
    Filed: May 22, 2019
    Publication date: September 19, 2019
    Inventors: Marshall Gordon Jones, William Thomas Carter, James William Sears
  • Patent number: 10356945
    Abstract: In accordance with one aspect of the invention, a thermal management system for electronics includes a vapor chamber that at least partially envelops the electronics, a working fluid contained within the vapor chamber and used to dissipate heat from a part of a heated portion of the electronics and a precision sintered 3D wick structure independently created on some of the interior of the vapor chamber. The precision sintered 3D wick structure transports the working fluid by capillary action from at least one working fluid receptacle to a part of the heated portion of the electronics. In one embodiment of the invention, the 3D vapor chamber may be formed by the additive manufacturing processes. A further example includes precision sintered 3D support structures integrated into the closed 3D vapor chamber.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: July 16, 2019
    Assignee: General Electric Company
    Inventors: Brian Rush, James William Sears
  • Patent number: 10328685
    Abstract: A method of forming a build in a powder bed includes emitting a plurality of laser beams from selected fibers of a diode laser fiber array onto the powder bed, the selected fibers of the array corresponding to a pattern of a layer of the build; and simultaneously melting powder in the powder bed corresponding to the pattern of the layer of the build.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: June 25, 2019
    Assignee: General Electric Company
    Inventors: Marshall Gordon Jones, William Thomas Carter, James William Sears
  • Publication number: 20180348070
    Abstract: An imaging system includes a sight tube extending along a longitudinal axis of the imaging system and configured to extend through an access port. The sight tube includes a wall extending about the longitudinal axis and defining a cavity. The imaging system also includes a plurality of cooling channels extending through the sight tube. The plurality of cooling channels are configured to direct cooling fluid through the sight tube for cooling the imaging system. The plurality of cooling channels are formed in the sight tube such that at least one cooling channel of the plurality of cooling channels extends in a direction oblique to the longitudinal axis.
    Type: Application
    Filed: June 6, 2017
    Publication date: December 6, 2018
    Inventors: Guanghua Wang, Nirm Velumylum Nirmalan, Mohamed Sakami, Thomas Charles Adcock, Jeffrey Jay Porubcan, James William Sears, Naveenan Thiagarajan, Bernard Bewlay, Jason Edward Dees, James DeLancey
  • Publication number: 20180345382
    Abstract: A powder melting device for an additive manufacturing system including a laser device configured to emit an energy beam and a beam modulator. The beam modulator is configured to selectively induce an angular deflection in the energy beam for a predetermined time period such that the energy beam generates a plurality of melt pools in a powder bed.
    Type: Application
    Filed: June 6, 2017
    Publication date: December 6, 2018
    Inventors: Subhrajit Roychowdhury, James William Sears, Harry Kirk Mathews, JR.
  • Publication number: 20180193955
    Abstract: A component is fabricated in a powder bed by moving a laser array across the powder bed. The laser array includes a plurality of laser devices. The power output of each laser device of the plurality of laser devices is independently controlled. The laser array emits a plurality of energy beams from a plurality of selected laser devices of the plurality of laser devices to generate a melt pool in the powder bed. A non-uniform energy intensity profile is generated by the plurality of selected laser devices. The non-uniform energy intensity profile facilitates generating a melt pool that has a predetermined characteristic.
    Type: Application
    Filed: January 9, 2017
    Publication date: July 12, 2018
    Inventors: Jason Harris Karp, Justin John Gambone, JR., Michael Evans Graham, David Charles Bogdan, JR., Victor Petrovich Ostroverkhov, William Thomas Carter, Harry Kirk Mathews, JR., Kevin George Harding, Jinjie Shi, Marshall Gordon Jones, James William Sears
  • Publication number: 20180124341
    Abstract: An imaging device for an additive manufacturing system is provided. The additive manufacturing system includes a material. The imaging device includes a high resolution imaging bar including at least one detector array, and an imaging element positioned between the at least one detector array and the material. The high resolution imaging bar is displaced from the material along a first direction and extends along a second direction. The high resolution imaging bar is configured to generate an image of a build layer within the material.
    Type: Application
    Filed: July 28, 2017
    Publication date: May 3, 2018
    Inventors: Kevin George Harding, Jason Harris Karp, James William Sears
  • Publication number: 20170368753
    Abstract: According to some embodiments, system and methods are provided comprising generating a nominal computer-aided design (CAD) image of a component; producing a physical representation of the component from the nominal CAD image using an additive manufacturing (AM) process; measuring the physical component to obtain measurement data; determining a deviation between geometry associated with the nominal CAD image and the obtained measurement data; determining a compensation field for the deviation, if the deviation is outside of a tolerance threshold; modifying the nominal CAD image by the compensation field; and producing a physical representation of the component from the modified nominal CAD image. Numerous other aspects are provided.
    Type: Application
    Filed: June 27, 2016
    Publication date: December 28, 2017
    Inventors: Pinghai YANG, James William SEARS, Steven Charles WOODS, Michael Evans GRAHAM
  • Publication number: 20170210073
    Abstract: Adaptively forming a three-dimensional component may include providing a plurality of electron beam sources, and simultaneously controlling the plurality of electron beam sources to direct a plurality of electron beams onto a plurality of deposited layers of metallic powder to sequentially consolidate patterned portions of the plurality of deposited metallic powder layers to adaptively form the three-dimensional component.
    Type: Application
    Filed: January 25, 2016
    Publication date: July 27, 2017
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Mark Alan FRONTERA, Vasile Bogdan NECULAES, James William SEARS, Peter Andras ZAVODSZKY
  • Publication number: 20170064868
    Abstract: In accordance with one aspect of the invention, a thermal management system for electronics includes a vapor chamber that at least partially envelops the electronics, a working fluid contained within the vapor chamber and used to dissipate heat from a part of a heated portion of the electronics and a precision sintered 3D wick structure independently created on some of the interior of the vapor chamber. The precision sintered 3D wick structure transports the working fluid by capillary action from at least one working fluid receptacle to a part of the heated portion of the electronics. In one embodiment of the invention, the 3D vapor chamber may be formed by the additive manufacturing processes. A further example includes precision sintered 3D support structures integrated into the closed 3D vapor chamber.
    Type: Application
    Filed: August 4, 2016
    Publication date: March 2, 2017
    Inventors: Brian Rush, James William Sears