Patents by Inventor Jamey Nielsen

Jamey Nielsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7611523
    Abstract: An anastomosis device is a one piece device for connecting a graft vessel to a target vessel without the use of conventional sutures. The anastomosis device includes an expandable tube configured to have a graft vessel secured to the tube. The device has an expandable linkage positioned at one end of the device and expansion of this linkage causes a first radially extending flange to fold outward. This first flange abuts an interior wall of a target vessel and a second flange is formed which abuts an exterior wall of the target vessel trapping the target vessel between the two flanges and secures the end of the graft vessel into an opening in the wall of the target vessel. The device greatly increases the speed with which anastomosis can be performed over known suturing methods and allows anastomosis to be performed in tight spaces.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: November 3, 2009
    Assignee: Cardica, Inc.
    Inventors: Jaime Vargas, Stephen A. Yencho, Jamey Nielsen, Michael Hendricksen, Bernard A. Hausen
  • Publication number: 20070119902
    Abstract: A surgical stapler may include a staple holder, an anvil connected to the staple holder, where at least one of the staple holder and the anvil may be movable relative to the other, and where the anvil may include a groove defined therein, and a cutter that may be slidable along the groove in the anvil. Such a stapler may be used for treating a tissue structure having a lumen defined therein and a wall surrounding the lumen, such as by inserting the anvil into the lumen of the tissue structure through an opening in the wall of the tissue structure; and incising the wall of the tissue structure from the inside, utilizing the cutter.
    Type: Application
    Filed: February 2, 2007
    Publication date: May 31, 2007
    Inventors: Jaime Vargas, Michael Hendricksen, Stephen Yencho, Jamey Nielsen, Bernard Hausen, Brendan Donohoe
  • Patent number: 7217285
    Abstract: An apparatus for performing anastomosis between a graft vessel and a target vessel may include a connector holder having spaced-apart arms, and a member connected to the connector holder, where the member is insertable through an opening in a wall of the target vessel at least partially into the lumen of the target vessel. One or more connectors, such as staples, may be deployed from each arm to connect the graft vessel to the target vessel. One or more connectors may be deformable against the member.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: May 15, 2007
    Assignee: Cardica, Inc.
    Inventors: Jaime Vargas, Michael Hendricksen, Stephen A. Yencho, Jamey Nielsen, Bernard A. Hausen, Brendan Donohoe
  • Publication number: 20070106312
    Abstract: A method for connecting a graft vessel to a target vessel may utilize an integrated tool that includes a movable cam having a number of discrete slots defined therein. The method may include moving the cam, creating an opening in the wall of the target vessel with the integrated tool; and advancing an anastomosis device at least partially into the opening with the integrated tool, where moving the cam causes both the creating of the opening and the advancing of the anastomosis device.
    Type: Application
    Filed: December 22, 2006
    Publication date: May 10, 2007
    Applicant: CARDICA, INC.
    Inventors: Jaime Vargas, Stephen Yencho, Jamey Nielsen, Michael Hendricksen, Bernard Hausen
  • Patent number: 7175637
    Abstract: An anastomosis device is a one piece device for connecting a graft vessel to a target vessel without the use of conventional sutures. The anastomosis device includes an expandable tube configured to have a graft vessel secured to the tube. The device has an expandable linkage positioned at one end of the device and expansion of this linkage causes a first radially extending flange to fold outward. This first flange abuts an interior wall of a target vessel and a second flange is formed which abuts an exterior wall of the target vessel trapping the target vessel between the two flanges and secures the end of the graft vessel into an opening in the wall of the target vessel. The device greatly increases the speed with which anastomosis can be performed over known suturing methods and allows anastomosis to be performed in tight spaces.
    Type: Grant
    Filed: September 4, 2001
    Date of Patent: February 13, 2007
    Assignee: Cardica, Inc.
    Inventors: Jaime Vargas, Stephen A. Yencho, Jamey Nielsen, Michael Hendricksen, Bernard A. Hausen
  • Patent number: 7172608
    Abstract: An anastomosis device is a one piece device for connecting a graft vessel to a target vessel without the use of conventional sutures. The anastomosis device includes an expandable tube configured to have a graft vessel secured to the tube. The device has an expandable linkage positioned at one end of the device and expansion of this linkage causes a first radially extending flange to fold outward. This first flange abuts an interior wall of a target vessel and a second flange is formed which abuts an exterior wall of the target vessel trapping the target vessel between the two flanges and secures the end of the graft vessel into an opening in the wall of the target vessel. The device greatly increases the speed with which anastomosis can be performed over known suturing methods and allows anastomosis to be performed in tight spaces.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: February 6, 2007
    Assignee: Cardica, Inc.
    Inventors: Jaime Vargas, Stephen A. Yencho, Jamey Nielsen, Michael Hendricksen, Bernard A. Hausen
  • Patent number: 7128749
    Abstract: An anastomosis device is a one piece device for connecting a graft vessel to a target vessel without the use of conventional sutures. The anastomosis device includes an expandable tube configured to have a graft vessel secured to the tube. The device has an expandable linkage positioned at one end of the device and expansion of this linkage causes a first radially extending flange to fold outward. This first flange abuts an interior wall of a target vessel and a second flange is formed which abuts an exterior wall of the target vessel trapping the target vessel between the two flanges and secures the end of the graft vessel into an opening in the wall of the target vessel. The device greatly increases the speed with which anastomosis can be performed over known suturing methods and allows anastomosis to be performed in tight spaces.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: October 31, 2006
    Assignee: Cardica, Inc.
    Inventors: Jaime Vargas, Stephen A. Yencho, Jamey Nielsen, Michael Hendricksen, Bernard A. Hausen
  • Patent number: 7063712
    Abstract: An anastomosis system and method uses an anvil to control and support a tissue site during an anastomosis procedure. The anvil is particularly useful for supporting a wall of a coronary artery during attachment of a graft vessel to the coronary artery because the wall of the coronary artery is very thin, difficult to grasp, and susceptible to tearing. In one method, the anvil is inserted into a pressurized or unpressurized target vessel and is pulled against an inner wall of the target vessel causing tenting of the thin tissue of the vessel wall. A graft vessel is then advanced to the anastomosis site and an end of the graft vessel is positioned adjacent and exterior of the target vessel. Staples are inserted through the tissue of the graft vessel and the target vessel by pivoting the arms of a staple holder towards the anvil. When the ends of the staples engage staple bending features on the anvil, the ends of the staples bend over securing the graft vessel and target vessel together.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: June 20, 2006
    Assignee: Cardica, Inc.
    Inventors: Jaime Vargas, Michael Hendricksen, Stephen A. Yencho, Jamey Nielsen, Bernard A. Hausen, Brendan Donohoe
  • Publication number: 20060116699
    Abstract: A method and system for performing anastomosis may use an anvil to control and support a tissue site during an anastomosis procedure involving tissue bonding techniques such as adhesive tissue bonding. Adhesive may be applied to mating surfaces of the graft and/or target vessels either before or after the vessels are brought into contact. Adhesive may be applied via an applicator associated with the anvil.
    Type: Application
    Filed: January 13, 2006
    Publication date: June 1, 2006
    Inventors: David Bombard, Theodore Bender, Tenny Chang, Jaime Vargas, Michael Hendricksen, Stephen Yencho, Jamey Nielsen, Bernard Hausen, Brendan Donohoe
  • Patent number: 7014644
    Abstract: A method and system for performing anastomosis uses an anvil to control and support a tissue site during an anastomosis procedure involving tissue bonding techniques such as tissue welding and adhesive tissue bonding. The anvil is particularly useful for supporting a wall of a coronary artery during attachment of a graft vessel in a coronary artery bypass graft procedure. The anvil is inserted into a pressurized or unpressurized target vessel and is pulled against an inner wall of the target vessel causing tenting of the thin tissue of the vessel wall. A graft vessel is then advanced to the anastomosis site and an end of the graft vessel is positioned adjacent an exterior of the target vessel. When tissue welding is used, a graft vessel fixture is positioned over the tissue surfaces to be welded in order to clamp the graft and target vessel tissue together. The tissue contacting surfaces of the anvil and/or graft vessel fixture are provided with one or more energy applying surfaces.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: March 21, 2006
    Assignee: Cardica, Inc.
    Inventors: David Bombard, Theodore Bender, Tenny Chang, Jaime Vargas, Michael Hendricksen, Stephen A. Yencho, Jamey Nielsen, Bernard A. Hausen, Brendan Donohoe
  • Patent number: 6994714
    Abstract: An anastomosis system and method uses an anvil to control and support a tissue site during an anastomosis procedure. The anvil is particularly useful for supporting a wall of a coronary artery during attachment of a graft vessel to the coronary artery because the wall of the coronary artery is very thin, difficult to grasp, and susceptible to tearing. In one method, the anvil is inserted into a pressurized or unpressurized target vessel and is pulled against an inner wall of the target vessel causing tenting of the thin tissue of the vessel wall. A graft vessel is then advanced to the anastomosis site and an end of the graft vessel is positioned adjacent and exterior of the target vessel. Staples are inserted through the tissue of the graft vessel and the target vessel by pivoting the arms of a staple holder towards the anvil. When the ends of the staples engage staple bending features on the anvil, the ends of the staples bend over securing the graft vessel and target vessel together.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: February 7, 2006
    Assignee: Cardica, Inc.
    Inventors: Jaime Vargas, Michael Hendricksen, Stephen A. Yencho, Jamey Nielsen, Bernard A. Hausen, Brendan Donohoe
  • Patent number: 6966920
    Abstract: The anastomosis device according to the present invention is a one piece device for connecting a graft vessel to a target vessel without the use of conventional sutures. The anastomosis device includes a frame for receiving and holding the end of a graft vessel in an everted position and first and second spreading members configured to be inserted into an opening in the target vessel. The first and second spreading members are arranged substantially in a plane for insertion into an opening in a target vessel, and are moved away from one another to capture the edges of the opening in the target vessel securing the graft vessel to the target vessel. One version of the anastomosis device includes a plurality of linkages arranged in two rows for grasping opposite sides of an opening in the target vessel. A portion of the linkages fold outward to trap vessel walls on opposite sides of the opening in the target vessel.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: November 22, 2005
    Assignee: Cardica, Inc.
    Inventors: Stephen A. Yencho, Michael Hendricksen, Jaime Vargas, Jamey Nielsen, Bernard A. Hausen, Scott Vance
  • Publication number: 20050234483
    Abstract: An anastomosis device may include an outer loop and an inner loop connected to and substantially concentric with the inner loop. The outer loop and the inner loop may be connected by at least one hinge. At least one of the outer loop and the inner loop may be movable relative to the other along an axis defined by at least one hinge.
    Type: Application
    Filed: June 10, 2005
    Publication date: October 20, 2005
    Inventors: Stephen Yencho, Michael Hendricksen, Jaime Vargas, Jamey Nielsen, Bernard Hausen, Scott Vance
  • Publication number: 20040260342
    Abstract: An apparatus for performing anastomosis between a graft vessel and a target vessel may include a connector holder having spaced-apart arms, and a member connected to the connector holder, where the member is insertable through an opening in a wall of the target vessel at least partially into the lumen of the target vessel. One or more connectors, such as staples, may be deployed from each arm to connect the graft vessel to the target vessel. One or more connectors may be deformable against the member.
    Type: Application
    Filed: July 23, 2004
    Publication date: December 23, 2004
    Applicant: Cardica, Inc.
    Inventors: Jaime Vargas, Michael Hendricksen, Stephen A. Yencho, Jamey Nielsen, Bernard A. Hausen, Brendan Donohoe
  • Publication number: 20040249400
    Abstract: An anastomosis device may include a central region, and at least one projection connected to the distal end of the central region, where at least one projection is foldable in at least the proximal direction. An anastomosis device may include a central region, and an inner flange connected to the distal end of the central region, the inner flange deployable from a first position to an expanded position, where the inner flange includes at least one substantially triangular inner flange element.
    Type: Application
    Filed: July 2, 2004
    Publication date: December 9, 2004
    Applicant: Cardica, Inc.
    Inventors: Jaime Vargas, Stephen A. Yencho, Jamey Nielsen, Michael Hendricksen, Bernard A. Hausen
  • Publication number: 20040210244
    Abstract: An anastomosis device is a one piece device for connecting a graft vessel to a target vessel without the use of conventional sutures. The anastomosis device includes an expandable tube configured to have a graft vessel secured to the tube. The device has an expandable linkage positioned at one end of the device and expansion of this linkage causes a first radially extending flange to fold outward. This first flange abuts an interior wall of a target vessel and a second flange is formed which abuts an exterior wall of the target vessel trapping the target vessel between the two flanges and secures the end of the graft vessel into an opening in the wall of the target vessel. The device greatly increases the speed with which anastomosis can be performed over known suturing methods and allows anastomosis to be performed in tight spaces.
    Type: Application
    Filed: September 4, 2001
    Publication date: October 21, 2004
    Applicant: Cardica, Inc.
    Inventors: Jaime Vargas, Stephen A. Yencho, Jamey Nielsen, Michael Hendricksen, Bernard A. Hausen
  • Patent number: 6786914
    Abstract: An anastomosis device is a one piece device for connecting a graft vessel to a target vessel without the use of conventional sutures. The anastomosis device includes an expandable tube configured to have a graft vessel secured to the tube. The device has an expandable linkage positioned at one end of the device and expansion of this linkage causes a first radially extending flange to fold outward. This first flange abuts an interior wall of a target vessel and a second flange is formed which abuts an exterior wall of the target vessel trapping the target vessel between the two flanges and secures the end of the graft vessel into an opening in the wall of the target vessel. The device greatly increases the speed with which anastomosis can be performed over known suturing methods and allows anastomosis to be performed in tight spaces.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: September 7, 2004
    Assignee: Cardica, Inc.
    Inventors: Jaime Vargas, Stephen A. Yencho, Jamey Nielsen, Michael Hendricksen, Bernard A. Hausen
  • Publication number: 20040097991
    Abstract: An anastomosis device is a one piece device for connecting a graft vessel to a target vessel without the use of conventional sutures. The anastomosis device includes an expandable tube configured to have a graft vessel secured to the tube. The device has an expandable linkage positioned at one end of the device and expansion of this linkage causes a first radially extending flange to fold outward. This first flange abuts an interior wall of a target vessel and a second flange is formed which abuts an exterior wall of the target vessel trapping the target vessel between the two flanges and secures the end of the graft vessel into an opening in the wall of the target vessel. The device greatly increases the speed with which anastomosis can be performed over known suturing methods and allows anastomosis to be performed in tight spaces.
    Type: Application
    Filed: September 18, 2003
    Publication date: May 20, 2004
    Applicant: Cardica, Inc.
    Inventors: Jaime Vargas, Stephen A. Yencho, Jamey Nielsen, Michael Hendrickson, Bernard A. Hausen
  • Publication number: 20040092977
    Abstract: An anastomosis device is a one piece device for connecting a graft vessel to a target vessel without the use of conventional sutures. The anastomosis device includes an expandable tube configured to have a graft vessel secured to the tube. The device has an expandable linkage positioned at one end of the device and expansion of this linkage causes a first radially extending flange to fold outward. This first flange abuts an interior wall of a target vessel and a second flange is formed which abuts an exterior wall of the target vessel trapping the target vessel between the two flanges and secures the end of the graft vessel into an opening in the wall of the target vessel. The device greatly increases the speed with which anastomosis can be performed over known suturing methods and allows anastomosis to be performed in tight spaces.
    Type: Application
    Filed: June 26, 2003
    Publication date: May 13, 2004
    Applicant: Cardica, Inc.
    Inventors: Jaime Vargas, Stephen A. Yencho, Jamey Nielsen, Michael Hendricksen, Bernard A. Hausen
  • Patent number: 6652541
    Abstract: An anastomosis device is a one piece device for connecting a graft vessel to a target vessel without the use of conventional sutures. The anastomosis device includes an expandable tube configured to have a graft vessel secured to the tube. The device has an expandable linkage positioned at one end of the device and expansion of this linkage causes a first radially extending flange to fold outward. This first flange abuts an interior wall of a target vessel and a second flange is formed which abuts an exterior wall of the target vessel trapping the target vessel between the two flanges and secures the end of the graft vessel into an opening in the wall of the target vessel. The device greatly increases the speed with which anastomosis can be performed over known suturing methods and allows anastomosis to be performed in tight spaces.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: November 25, 2003
    Assignee: Cardica, Inc
    Inventors: Jaime Vargas, Stephen A. Yencho, Jamey Nielsen, Michael Hendricksen, Bernard A. Hausen