Patents by Inventor Jamie Cohen

Jamie Cohen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060228622
    Abstract: A microfluidic membraneless flow cell formed with multiple acidic/alkaline electrolyte solutions. The flow cell can be adapted to provide a dual electrolyte H2/O2 fuel cell that generates thermodynamic potentials of up to 1.943 V or possibly greater. The selected fuel can be hydrogen dissolved in 0.1 M KOH, and the selected oxidant can be oxygen dissolved in 0.1 M H2SO4. Individual fuel cells can be combined to form fuel cell stacks to generate increased power output. Furthermore, microchannels of varying dimensions may be selected, including thickness variations, and different flow rates of acid/base electrolyte solutions can be applied to satisfy predetermined power generation needs. Some (micro-) fuel cell embodiments can be formed with silicon microchannels of fixed length and variable width and height, and can be used with hydrogen or formic acid as a fuel and oxygen as an oxidant, each dissolved in different acid/base electrolyte solutions.
    Type: Application
    Filed: November 21, 2005
    Publication date: October 12, 2006
    Inventors: Jamie Cohen, David Volpe, Hector Abruna
  • Publication number: 20060003217
    Abstract: A planar microfluidic membraneless flow cell. The design eliminates the need for a mechanical membrane, such as a polyelectrolyte membrane (PEM) in a fuel cell, by providing a flow channel in which laminar flow regimes exist in two fluids flowing in mutual contact to form a “virtual interface” in the flow channel. In the flow cell, diffusion at the interface is the only mode of mass transport between the two fluids. In a fuel cell embodiment, a planar design provides to large contact areas between the two streams, which are fuel and oxidant streams, and between each stream and a respective electrode. In some embodiments, silicon microchannels, of fixed length and variable width and height, have been used to generate power using formic acid as fuel and oxygen as oxidant. Power densities on the order of 180 ?W/cm2 have been obtained using this planar design.
    Type: Application
    Filed: June 10, 2005
    Publication date: January 5, 2006
    Applicant: Cornell Research Foundation, Inc.
    Inventors: Jamie Cohen, David Volpe, Daron Westly, Alexander Pechenik, Hector Abruna