Patents by Inventor Jan-Frederik Nekarda

Jan-Frederik Nekarda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8828790
    Abstract: A method for local contacting and local doping of a semiconductor layer including the following process steps: A) Generation of a layer structure on the semiconductor layer through i) application of at least one intermediate layer on one side of the semiconductor layer, and ii) application of at least one metal layer onto the intermediate layer last applied in step i), wherein the metal layer at least partly covers the last applied intermediate layer, B) Local heating of the layer structure in such a manner that in a local region a short-time melt-mixture of at least partial regions of at least the layers: metal layer, intermediate layer and semiconductor layer, forms. After solidification of the melt-mixture, a contacting is created between metal layer and semiconductor layer. It is essential that in step A) i) at least one intermediate layer designed as dopant layer is applied, which contains a dopant wherein the dopant has a greater solubility in the semiconductor layer than the metal of the metal layer.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: September 9, 2014
    Assignee: Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung E.V.
    Inventors: Ralf Preu, Andreas Grohe, Daniel Biro, Jochen Rentsch, Marc Hofmann, Jan-Frederik Nekarda, Andreas Wolf
  • Publication number: 20110233711
    Abstract: A method for local contacting and local doping of a semiconductor layer including the following process steps: A) Generation of a layer structure on the semiconductor layer through i) application of at least one intermediate layer on one side of the semiconductor layer, and ii) application of at least one metal layer onto the intermediate layer last applied in step i), wherein the metal layer at least partly covers the last applied intermediate layer, B) Local heating of the layer structure in such a manner that in a local region a short-time melt-mixture of at least partial regions of at least the layers: metal layer, intermediate layer and semiconductor layer, forms. After solidification of the melt-mixture, a contacting is created between metal layer and semiconductor layer. It is essential that in step A) i) at least one intermediate layer designed as dopant layer is applied, which contains a dopant wherein the dopant has a greater solubility in the semiconductor layer than the metal of the metal layer.
    Type: Application
    Filed: August 20, 2009
    Publication date: September 29, 2011
    Applicant: Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V.
    Inventors: Ralf Preu, Andreas Grohe, Daniel Biro, Jochen Rentsch, Marc Hofmann, Jan-Frederik Nekarda, Andreas Wolf
  • Patent number: 8003530
    Abstract: The present invention relates to a method for metallizing semiconductor components in which aluminium is used. In particular in the case of products in which the process costs play a big part, such as e.g. solar cells based on silicon, a cost advantage can be achieved with the invention. In addition, the present invention relates to the use of the method, for example in the production of solar cells.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: August 23, 2011
    Assignee: Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung E.V.
    Inventors: Andreas Grohe, Jan-Frederik Nekarda, Oliver Schultz-Wittmann
  • Publication number: 20090221112
    Abstract: The present invention relates to a method for metallizing semiconductor components in which aluminium is used. In particular in the case of products in which the process costs play a big part, such as e.g. solar cells based on silicon, a cost advantage can be achieved with the invention. In addition, the present invention relates to the use of the method, for example in the production of solar cells.
    Type: Application
    Filed: March 6, 2009
    Publication date: September 3, 2009
    Inventors: Andreas Grohe, Jan-Frederik Nekarda, Oliver Schultz-Wittmann