Patents by Inventor Jan Huisken

Jan Huisken has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10678042
    Abstract: Method for imaging regions of a sample using a light source and an optical detection means and at least one device for moving the sample in three dimensions, comprising the following method steps: a) introducing at least one magnetic element into the sample, b) applying a magnetic field by means of the at least one device for moving the sample in three dimensions, the magnetic field interacting with the at least one magnetic element introduced into the sample, c) arranging the region of the sample in a radiation region of the light source and in a detection region of the detection means, d) emitting first light beams from the light source onto the sample, e) generating second light beams by means of the sample, f) recording an image of a region of the sample by capturing a proportion, incident on the detection means from the sample, of the second light beams, g) moving the at least one magnetic element and the sample containing this at least one magnetic element by varying the magnetic field, h) repeating ste
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: June 9, 2020
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Jan Huisken, Gopi Shah
  • Patent number: 10634888
    Abstract: The invention relates to a light microscope for examining microscopic objects with high throughput. The microscope comprises a light source for illuminating a measuring zone, a sample vessel, in which the microscopic objects can be successively moved into the measuring zone, and a detection device for measuring detection light, which originates from a microscopic object located in the measuring zone. According to the invention, the microscope is characterized in that the imaging means comprise a detection lens having a stationary front optics and movable focusing optics, wherein the focusing optics is arranged behind the front optics and in front of an intermediate image plane, and can be adjusted for the height adjustment of a detection plane. The invention further relates to a corresponding microscopy method.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: April 28, 2020
    Assignees: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e. V., Carl Zeiss Microscopy GmbH
    Inventors: Helmut Lippert, Jörg Siebenmorgen, Jan Huisken, Florian Fahrbach
  • Publication number: 20190384046
    Abstract: The invention relates to a light microscope for examining microscopic objects with high throughput. The microscope comprises a light source for illuminating a measuring zone, a sample vessel, in which the microscopic objects can be successively moved into the measuring zone, and a detection device for measuring detection light, which originates from a microscopic object located in the measuring zone. According to the invention, the microscope is characterized in that the imaging means comprise a detection lens having a stationary front optics and movable focusing optics, wherein the focusing optics is arranged behind the front optics and in front of an intermediate image plane, and can be adjusted for the height adjustment of a detection plane. The invention further relates to a corresponding microscopy method.
    Type: Application
    Filed: August 28, 2019
    Publication date: December 19, 2019
    Applicants: Carl Zeiss Microscopy GmbH, Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Helmut Lippert, Jörg Siebenmorgen, Jan Huisken, Florian Fahrbach
  • Patent number: 10437038
    Abstract: The invention is directed to a method for creating an optical tomogram, which comprises the steps providing an optical microscope, arranging a sample (1) in the optical coverage region of a lens (5) of the microscope, setting the focus of the lens to a particular focal plane (2), recording an image of the sample through the microscope, rotating the sample through an angle ?, optionally displacing the sample along the longitudinal axis (z) of the lens (5) and/or perpendicular to the plane of the previously recorded image (9) and continuing the method with step d) until a predetermined number of section images (9) of the sample (1) have been recorded, wherein the sample (1) is displaced along the longitudinal axis (z) of the lens (5) and/or perpendicular to the plane of the previously recorded image (9), in accordance with step f), at least once during a rotation of the sample through 360°.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: October 8, 2019
    Assignee: MAX-PLANCK-GESELLESCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.
    Inventors: Andrea Bassi, Jan Huisken, Benjamin Schmid
  • Patent number: 10422983
    Abstract: The invention relates to a light microscope for examining microscopic objects with high throughput. The microscope comprises a light source for illuminating a measuring zone, a sample vessel, in which the microscopic objects can be successively moved into the measuring zone, and a detection device for measuring detection light, which originates from a microscopic object located in the measuring zone. According to the invention, the microscope is characterized in that the imaging means comprise a detection lens having a stationary front optics and movable focusing optics, wherein the focusing optics is arranged behind the front optics and in front of an intermediate image plane, and can be adjusted for the height adjustment of a detection plane. The invention further relates to a corresponding microscopy method.
    Type: Grant
    Filed: October 15, 2014
    Date of Patent: September 24, 2019
    Assignees: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e. V., Carl Zeiss Microscopy GmbH
    Inventors: Helmut Lippert, Jörg Siebenmorgen, Jan Huisken, Florian Fahrbach
  • Publication number: 20180052315
    Abstract: Method for imaging regions of a sample using a light source and an optical detection means and at least one device for moving the sample in three dimensions, comprising the following method steps: a) introducing at least one magnetic element into the sample, b) applying a magnetic field by means of the at least one device for moving the sample in three dimensions, the magnetic field interacting with the at least one magnetic element introduced into the sample, c) arranging the region of the sample in a radiation region of the light source and in a detection region of the detection means, d) emitting first light beams from the light source onto the sample, e) generating second light beams by means of the sample, f) recording an image of a region of the sample by capturing a proportion, incident on the detection means from the sample, of the second light beams, g) moving the at least one magnetic element and the sample containing this at least one magnetic element by varying the magnetic field, h) repeating ste
    Type: Application
    Filed: April 1, 2016
    Publication date: February 22, 2018
    Inventors: Jan Huisken, Gopi Shah
  • Publication number: 20180031818
    Abstract: The invention is directed to a method for creating an optical tomogram, which comprises the steps providing an optical microscope, arranging a sample (1) in the optical coverage region of a lens (5) of the microscope, setting the focus of the lens to a particular focal plane (2), recording an image of the sample through the microscope, rotating the sample through an angle ?, optionally displacing the sample along the longitudinal axis (z) of the lens (5) and/or perpendicular to the plane of the previously recorded image (9) and continuing the method with step d) until a predetermined number of section images (9) of the sample (1) have been recorded, wherein the sample (1) is displaced along the longitudinal axis (z) of the lens (5) and/or perpendicular to the plane of the previously recorded image (9), in accordance with step f), at least once during a rotation of the sample through 360°.
    Type: Application
    Filed: February 20, 2015
    Publication date: February 1, 2018
    Inventors: Andrea BASSI, Jan HUISKEN, Benjamin SCHMID
  • Patent number: 9857577
    Abstract: A microscope and imaging method in which a layer of the sample is illuminated by a thin strip of light and the sample is viewed perpendicular to the plane of the strip of light. The depth of the strip of light thus essentially determines the depth of focus of the system. To record the image, the object is displaced through the strip of light, which remains fixed in relation to the detector, and fluorescent and/or diffused light is captured by a planar detector. Objects that absorb or diffuse a large amount of light are viewed from several spatial directions. The three-dimensional images, which are captured from each direction can be combined retrospectively to form one image, in which the data is weighted according to its resolution. The resolution of the combined image is then dominated by the lateral resolution of the individual images.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: January 2, 2018
    Assignee: European Molecular Biology Laboratory (EMBL)
    Inventors: Ernst H. K. Stelzer, Sebastian Enders, Jan Huisken, Steffen Lindek, James H. Swoger
  • Publication number: 20170160529
    Abstract: The invention relates to a light microscope for examining microscopic objects with high throughput. The microscope comprises a light source for illuminating a measuring zone, a sample vessel, in which the microscopic objects can be successively moved into the measuring zone, and a detection device for measuring detection light, which originates from a microscopic object located in the measuring zone. According to the invention, the microscope is characterized in that the imaging means comprise a detection lens having a stationary front optics and movable focusing optics, wherein the focusing optics is arranged behind the front optics and in front of an intermediate image plane, and can be adjusted for the height adjustment of a detection plane. The invention further relates to a corresponding microscopy method.
    Type: Application
    Filed: October 15, 2014
    Publication date: June 8, 2017
    Applicants: Carl Zeiss Microscopy GmbH, Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Helmut Lippert, Jörg Siebenmorgen, Jan Huisken, Florian Fahrbach
  • Patent number: 9134521
    Abstract: A method and device for multi-directional selective plane illumination microscopy is provided. A detector focal plane is alternately illuminated with at least two counter-propagating, coplanar light sheets, and an image of a specimen cross-section positioned in the focal plane is detected while only one light sheet illuminates the specimen. The wavefront of the illumination beams may be deformed with adaptive optics using feedback from light transmitted through the specimen. Multiple images of the specimen cross-section may be detected at different times and specimen positions and orientations to produce multi-view image stacks which may be processed using image fusion to produce a reconstructed image representation of the specimen. Additionally, the direction of propagation of the alternating light sheets may be pivoted in the focal plane while detecting the image.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: September 15, 2015
    Assignee: The Regents of the University of California
    Inventor: Jan Huisken
  • Publication number: 20140042339
    Abstract: A microscope and imaging method in which a layer of the sample is illuminated by a thin strip of light and the sample is viewed perpendicular to the plane of the strip of light. The depth of the strip of light thus essentially determines the depth of focus of the system. To record the image, the object is displaced through the strip of light, which remains fixed in relation to the detector, and fluorescent and/or diffused light is captured by a planar detector. Objects that absorb or diffuse a large amount of light are viewed from several spatial directions. The three-dimensional images, which are captured from each direction can be combined retrospectively to form one image, in which the data is weighted according to its resolution. The resolution of the combined image is then dominated by the lateral resolution of the individual images.
    Type: Application
    Filed: January 22, 2013
    Publication date: February 13, 2014
    Applicant: EUROPEAN MOLECULAR BIOLOGY LABORATORY (EMBL)
    Inventors: Ernst H.K. Stelzer, Sebastian Enders, Jan Huisken, Steffen Lindek, James H. Swoger
  • Publication number: 20110115895
    Abstract: A method and device for multi-directional selective plane illumination microscopy is provided. A detector focal plane is alternately illuminated with at least two counter-propagating, coplanar light sheets, and an image of a specimen cross-section positioned in the focal plane is detected while only one light sheet illuminates the specimen. The wavefront of the illumination beams may be deformed with adaptive optics using feedback from light transmitted through the specimen. Multiple images of the specimen cross-section may be detected at different times and specimen positions and orientations to produce multi-view image stacks which may be processed using image fusion to produce a reconstructed image representation of the specimen. Additionally, the direction of propagation of the alternating light sheets may be pivoted in the focal plane while detecting the image.
    Type: Application
    Filed: July 29, 2009
    Publication date: May 19, 2011
    Inventor: Jan Huisken
  • Publication number: 20090225413
    Abstract: The invention relates to a microscope, in which a layer of the sample is illuminated by a thin strip of light (11) and the sample is viewed (5) perpendicular to the plane of the strip of light. The depth of the strip of light (11) thus essentially determines the depth of focus of the system. To record the image, the object (4) is displaced through the strip of light (11), which remains fixed in relation to the detector (8), and fluorescent and/or diffused light is captured by a planar detector. Objects (4) that absorb or diffuse a large amount of light are viewed from several spatial directions. The three-dimensional images, which are captured from each direction can be combined retrospectively to form one image, in which the data is weighted according to its resolution. The resolution of the combined image is then dominated by the lateral resolution of the individual images.
    Type: Application
    Filed: May 19, 2009
    Publication date: September 10, 2009
    Applicant: EUROPAEISCHES Laboratorium fuer Molekularbiologie (EMBL)
    Inventors: Ernst H.K. Stelzer, Sebastian Enders, Jan Huisken, Steffen Lindek, James H. Swoger
  • Patent number: 7554725
    Abstract: The invention relates to a microscope, in which a layer of the sample is illuminated by a thin strip of light (11) and the sample is viewed (5) perpendicular to the plane of the strip of light. The depth of the strip of light (11) thus essentially determines the depth of focus of the system. To record the image, the object (4) is displaced through the strip of light (11), which remains fixed in relation to the detector (8), and fluorescent and/or diffused light is captured by a planar detector. Objects (4) that absorb or diffuse a large amount of light are viewed from several spatial directions. The three-dimensional images, which are captured from each direction can be combined retrospectively to form one image, in which the data is weighted according to its resolution. The resolution of the combined image is then dominated by the lateral resolution of the individual images.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: June 30, 2009
    Assignee: Europaeisches Laboratorium fuer Molekularbiologie (EMBL)
    Inventors: Ernst H. K. Stelzer, Sebastian Enders, Jan Huisken, Steffen Lindek, James H. Swoger