Patents by Inventor Jan Van Der Laan

Jan Van Der Laan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10754059
    Abstract: Example gravity gradiometers are described that utilize high precision resonant optical cavities to measure changes in gravitational forces at high sensitivities. In one example, a sensing system includes a gravity gradiometer and a controller. The gravity gradiometer includes a first mirror and a second mirror arranged to form an optical cavity having an optical axis. The controller is configured to detect, responsive to displacement of at least one of the first mirror and the second mirror along the optical axis, a change in gravity gradient.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: August 25, 2020
    Assignee: SRI International
    Inventors: Jesse Wodin, Sunil Goda, Eric Lavelle, Jan van der Laan, Ronald Pelrine, David Watt
  • Publication number: 20190277998
    Abstract: Example gravity gradiometers are described that utilize high precision resonant optical cavities to measure changes in gravitational forces at high sensitivities. In one example, a sensing system includes a gravity gradiometer and a controller. The gravity gradiometer includes a first mirror and a second mirror arranged to form an optical cavity having an optical axis. The controller is configured to detect, responsive to displacement of at least one of the first mirror and the second mirror along the optical axis, a change in gravity gradient.
    Type: Application
    Filed: March 9, 2018
    Publication date: September 12, 2019
    Inventors: Jesse Wodin, Sunil Goda, Eric Lavelle, Jan van der Laan, Ronald Pelrine, David Watt
  • Patent number: 10368429
    Abstract: An example particle accelerator includes the following: a voltage source to provide a radio frequency (RF) voltage to a cavity to accelerate particles from a plasma column, where the cavity has a magnetic field causing particles accelerated from the plasma column to move orbitally within the cavity; an extraction channel to receive the particles accelerated from the plasma column and to output the received particles from the cavity; and a regenerator to provide a magnetic field bump within the cavity to thereby change successive orbits of the particles accelerated from the plasma column so that, eventually, particles output to the extraction channel. The magnetic field is at least 6 Tesla and the magnetic field bump is at most 2 Tesla.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: July 30, 2019
    Assignee: Mevion Medical Systems, Inc.
    Inventors: Kenneth P. Gall, Gerrit Townsend Zwart, Jan Van der Laan, Ken Yoshiki Franzen
  • Publication number: 20170231081
    Abstract: An example particle accelerator includes the following: a voltage source to provide a radio frequency (RF) voltage to a cavity to accelerate particles from a plasma column, where the cavity has a magnetic field causing particles accelerated from the plasma column to move orbitally within the cavity; an extraction channel to receive the particles accelerated from the plasma column and to output the received particles from the cavity; and a regenerator to provide a magnetic field bump within the cavity to thereby change successive orbits of the particles accelerated from the plasma column so that, eventually, particles output to the extraction channel. The magnetic field is at least 6 Tesla and the magnetic field bump is at most 2 Tesla.
    Type: Application
    Filed: February 24, 2017
    Publication date: August 10, 2017
    Inventors: Kenneth P. Gall, Gerrit Townsend Zwart, Jan Van der Laan, Ken Yoshiki Franzen
  • Patent number: 9723705
    Abstract: In an example, a synchrocyclotron includes a particle source to provide pulses of ionized plasma to a cavity; a voltage source to provide a radio frequency (RF) voltage to the cavity to accelerate particles from the plasma column outwardly; and an extraction channel to receive a beam of particles from the cavity for output from the particle accelerator. The particle source is configured to control pulse widths of the ionized plasma in order to control an intensity of the beam of particles. This example synchrocyclotron may include one or more of the following features, either alone or in combination.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: August 1, 2017
    Assignee: Mevion Medical Systems, Inc.
    Inventors: Kenneth P. Gall, Gerrit Townsend Zwart, Jan Van der Laan, Adam C. Molzahn, Charles D. O'Neal, III, Thomas C. Sobczynski, James Cooley
  • Patent number: 9706636
    Abstract: An example particle accelerator includes a coil to provide a magnetic field to a cavity; a particle source to provide a plasma column to the cavity; a voltage source to provide a radio frequency (RF) voltage to the cavity to accelerate particles from the plasma column, where the magnetic field causes particles accelerated from the plasma column to move orbitally within the cavity; an enclosure containing an extraction channel to receive the particles accelerated from the plasma column and to output the received particles from the cavity; and a structure arranged proximate to the extraction channel to change an energy level of the received particles.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: July 11, 2017
    Assignee: Mevion Medical Systems, Inc.
    Inventors: Gerrit Townsend Zwart, Kenneth P. Gall, Jan Van der Laan, Stanley Rosenthal, Michael Busky, Charles D. O'Neal, III, Ken Yoshiki Franzen
  • Patent number: 9622335
    Abstract: An example particle accelerator includes the following: a voltage source to provide a radio frequency (RF) voltage to a cavity to accelerate particles from a plasma column, where the cavity has a magnetic field causing particles accelerated from the plasma column to move orbitally within the cavity; an extraction channel to receive the particles accelerated from the plasma column and to output the received particles from the cavity; and a regenerator to provide a magnetic field bump within the cavity to thereby change successive orbits of the particles accelerated from the plasma column so that, eventually, particles output to the extraction channel. The magnetic field is at least 6 Tesla and the magnetic field bump is at most 2 Tesla.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: April 11, 2017
    Assignee: Mevion Medical Systems, Inc.
    Inventors: Kenneth P. Gall, Gerrit Townsend Zwart, Jan Van Der Laan, Ken Yoshiki Franzen
  • Publication number: 20160205760
    Abstract: An example particle accelerator includes a coil to provide a magnetic field to a cavity; a particle source to provide a plasma column to the cavity; a voltage source to provide a radio frequency (RF) voltage to the cavity to accelerate particles from the plasma column, where the magnetic field causes particles accelerated from the plasma column to move orbitally within the cavity; an enclosure containing an extraction channel to receive the particles accelerated from the plasma column and to output the received particles from the cavity; and a structure arranged proximate to the extraction channel to change an energy level of the received particles.
    Type: Application
    Filed: March 18, 2016
    Publication date: July 14, 2016
    Inventors: Gerrit Townsend Zwart, Kenneth P. Gall, Jan Van der Laan, Stanley Rosenthal, Michael Busky, Charles D. O'Neal, III, Ken Yoshiki Franzen
  • Patent number: 9301384
    Abstract: An example particle accelerator includes a coil to provide a magnetic field to a cavity; a particle source to provide a plasma column to the cavity; a voltage source to provide a radio frequency (RF) voltage to the cavity to accelerate particles from the plasma column, where the magnetic field causes particles accelerated from the plasma column to move orbitally within the cavity; an enclosure containing an extraction channel to receive the particles accelerated from the plasma column and to output the received particles from the cavity; and a structure arranged proximate to the extraction channel to change an energy level of the received particles.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: March 29, 2016
    Assignee: Mevion Medical Systems, Inc.
    Inventors: Gerrit Townsend Zwart, Kenneth P. Gall, Jan Van der Laan, Stanley Rosenthal, Michael Busky, Charles D O'Neal, III, Ken Yoshiki Franzen
  • Patent number: 9185789
    Abstract: An example particle accelerator includes a coil to provide a magnetic field to a cavity; a cryostat comprising a chamber for holding the coil, where the coil is arranged in the chamber to define an interior region of the coil and an exterior region of the coil; magnetic structures adjacent to the cryostat, where the magnetic structures have one or more slots at least part-way therethrough; and one or more magnetic shims in one or more corresponding slots. The one or more magnetic shims are movable to adjust a position of the coil by changing a magnetic field produced by the magnetic structures.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: November 10, 2015
    Assignee: Mevion Medical Systems, Inc.
    Inventors: Gerrit Townsend Zwart, Jan Van der Laan, Kenneth P. Gall, Stanislaw P. Sobczynski
  • Patent number: 9155186
    Abstract: An example particle accelerator may include the following: a voltage source to sweep a radio frequency (RF) voltage in a cavity to accelerate particles from a plasma column, where the cavity has a magnetic field causing particles accelerated from the plasma column to move orbitally within the cavity, and where the magnetic field has flux that bows at edges of the cavity; a regenerator to provide a magnetic field bump within the cavity to thereby change successive orbits of the particles accelerated from the plasma column so that, eventually, particles output to an extraction point, where the regenerator is located at a radius in the cavity relative to the plasma column; and ferromagnetic arrangements located in the cavity proximate to the radius, where each ferromagnetic arrangement provides a magnetic field bump, and where ferromagnetic arrangements adjacent to the regenerator are separated from the regenerator by a space.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: October 6, 2015
    Assignee: Mevion Medical Systems, Inc.
    Inventors: Gerrit Townsend Zwart, Kenneth P. Gall, Jan Van der Laan, Charles D. O'Neal, III, Ken Yoshiki Franzen
  • Patent number: 8927950
    Abstract: An example particle accelerator includes the following: a resonant cavity in which particles are accelerated, where the resonant cavity has a background magnetic field having a first shape; and an extraction channel for receiving particles output from the resonant cavity. The extraction channel comprises a series of focusing regions to focus a beam of received particles. At least one of the focusing regions is a focusing element configured to alter a shape of the background magnetic field to a second shape that is substantially opposite to the first shape in the presence of a magnetic field gradient resulting from reduction of the background magnetic field from the resonant cavity to the extraction channel.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: January 6, 2015
    Assignee: Mevion Medical Systems, Inc.
    Inventors: Kenneth P. Gall, Gerrit Townsend Zwart, Jan Van der Laan, Charles D. O'Neal, III, Ken Yoshiki Franzen
  • Publication number: 20140094637
    Abstract: An example particle accelerator may include the following: a voltage source to sweep a radio frequency (RF) voltage in a cavity to accelerate particles from a plasma column, where the cavity has a magnetic field causing particles accelerated from the plasma column to move orbitally within the cavity, and where the magnetic field has flux that bows at edges of the cavity; a regenerator to provide a magnetic field bump within the cavity to thereby change successive orbits of the particles accelerated from the plasma column so that, eventually, particles output to an extraction point, where the regenerator is located at a radius in the cavity relative to the plasma column; and ferromagnetic arrangements located in the cavity proximate to the radius, where each ferromagnetic arrangement provides a magnetic field bump, and where ferromagnetic arrangements adjacent to the regenerator are separated from the regenerator by a space.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 3, 2014
    Applicant: Mevion Medical Systems, Inc.
    Inventors: Gerrit Townsend Zwart, Kenneth P. Gall, Jan Van der Laan, Charles D. O'Neal, III, Ken Yoshiki Franzen
  • Publication number: 20140094639
    Abstract: An example particle accelerator includes a coil to provide a magnetic field to a cavity; a particle source to provide a plasma column to the cavity; a voltage source to provide a radio frequency (RF) voltage to the cavity to accelerate particles from the plasma column, where the magnetic field causes particles accelerated from the plasma column to move orbitally within the cavity; an enclosure containing an extraction channel to receive the particles accelerated from the plasma column and to output the received particles from the cavity; and a structure arranged proximate to the extraction channel to change an energy level of the received particles.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 3, 2014
    Applicant: Mevion Medical Systems, Inc.
    Inventors: Gerrit Townsend Zwart, Kenneth P. Gall, Jan Van der Laan, Stanley Rosenthal, Michael Busky, Charles D O'Neal, III, Ken Yoshiki Franzen
  • Publication number: 20140094640
    Abstract: An example particle accelerator includes the following: a voltage source to provide a radio frequency (RF) voltage to a cavity to accelerate particles from a plasma column, where the cavity has a magnetic field causing particles accelerated from the plasma column to move orbitally within the cavity; an extraction channel to receive the particles accelerated from the plasma column and to output the received particles from the cavity; and a regenerator to provide a magnetic field bump within the cavity to thereby change successive orbits of the particles accelerated from the plasma column so that, eventually, particles output to the extraction channel. The magnetic field is at least 6 Tesla and the magnetic field bump is at most 2 Tesla.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 3, 2014
    Applicant: Mevion Medical Systems, Inc.
    Inventors: Kenneth P. Gall, Gerrit Townsend Zwart, Jan Van der Laan, Charles D. O'Neal, III, Ken Yoshiki Franzen
  • Publication number: 20140094638
    Abstract: In an example, a synchrocyclotron includes a particle source to provide pulses of ionized plasma to a cavity; a voltage source to provide a radio frequency (RF) voltage to the cavity to accelerate particles from the plasma column outwardly; and an extraction channel to receive a beam of particles from the cavity for output from the particle accelerator. The particle source is configured to control pulse widths of the ionized plasma in order to control an intensity of the beam of particles. This example synchrocyclotron may include one or more of the following features, either alone or in combination.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 3, 2014
    Applicant: Mevion Medical Systems, Inc.
    Inventors: Kenneth P. Gall, Gerrit Townsend Zwart, Jan Van der Laan, Adam C. Molzahn, Charles D. O'Neal, III, Thomas C. Sobczynski, James Cooley
  • Publication number: 20140094371
    Abstract: An example particle accelerator includes a coil to provide a magnetic field to a cavity; a cryostat comprising a chamber for holding the coil, where the coil is arranged in the chamber to define an interior region of the coil and an exterior region of the coil; magnetic structures adjacent to the cryostat, where the magnetic structures have one or more slots at least part-way therethrough; and one or more magnetic shims in one or more corresponding slots. The one or more magnetic shims are movable to adjust a position of the coil by changing a magnetic field produced by the magnetic structures.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 3, 2014
    Applicant: Mevion Medical Systems, Inc.
    Inventors: Gerrit Townsend Zwart, Jan Van der Laan, Kenneth P. Gall, Stanislaw P. Sobczynski
  • Publication number: 20140094641
    Abstract: An example particle accelerator includes the following: a resonant cavity in which particles are accelerated, where the resonant cavity has a background magnetic field having a first shape; and an extraction channel for receiving particles output from the resonant cavity. The extraction channel comprises a series of focusing regions to focus a beam of received particles. At least one of the focusing regions is a focusing element configured to alter a shape of the background magnetic field to a second shape that is substantially opposite to the first shape in the presence of a magnetic field gradient resulting from reduction of the background magnetic field from the resonant cavity to the extraction channel.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 3, 2014
    Applicant: Mevion Medical Systems, Inc.
    Inventors: Kenneth P. Gall, Gerrit Townsend Zwart, Jan Van der Laan, Charles D. O'Neal, III, Ken Yoshiki Franzen
  • Publication number: 20050124029
    Abstract: The invention relates to mutated penicillin acylases having a high synthesis/hydrolysis ratio in comparison with wild-type penicillin acylases and at least 1% of the activity. The invention also relates to a process for the enzymatic preparation of a ?-lactam antibiotic from a ?-lactam nucleus and an activated side chain with the aid of mutated penicillin acylases.
    Type: Application
    Filed: December 18, 2002
    Publication date: June 9, 2005
    Inventors: Wynand Alkema, Harold Moody, Jan Van Der Laan, Theodorus Johannes Van Dooren, Wilhelmus Hubertus Boesten