Patents by Inventor Jan Vetrovec

Jan Vetrovec has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230048286
    Abstract: The present invention provides a blue laser transmitter operating at the H-beta Fraunhofer line at 486.13 nm wavelength. The subject blue laser is based on pulsed lasing action in thulium doped into lutetium sesquioxide (Tm:Lu2O3). The laser wavelength is restricted by volume Bragg grating to the vicinity of 1944 nm wavelength. The laser is operated with a q-switch to generate high-energy pulses within the nanosecond regime. The output at the 1944 nm wavelength is then frequency quadrupled in a single pass through non-linear crystals to a wavelength near the center of the H-beta Fraunhofer line. The operation at the 1944 nm wavelength in Tm:Lu2O3 is very efficient because this wavelength is located on a shoulder of a substantially broad emission peak at 1945 nm. In addition, at the 1944 nm wavelength, Tm:Lu2O3 has only a modest saturation fluence of about 15 J/cm2, which allows for efficient energy extraction.
    Type: Application
    Filed: August 11, 2022
    Publication date: February 16, 2023
    Inventor: Jan Vetrovec
  • Publication number: 20230053015
    Abstract: This invention is for an innovative magnetic air separator (MAS) for delivering oxygen-enriched air or near-pure oxygen to for advanced combustion, coal gasification, industrial processes, and medical applications. In the MAS of the subject invention, input air is drawn into a large array of microchannels immersed in a strong, spatially varying magnetic field. Magnetic forces accelerate the paramagnetic O2 molecules within the microchannel flow and in a direction perpendicular to it, thus forming enriched and depleted streams. Such streams are then physically separated and subsequently combined according to their level of O2 enrichment or depletion. Highly enriched streams are repeatedly subjected to the magnetic separation process until the targeted level of O2 concentration is reached in selected streams. Partially enriched streams are recycled and fed back into the process feedstock air, while depleted streams are vented from the process.
    Type: Application
    Filed: August 16, 2021
    Publication date: February 16, 2023
    Inventor: Jan Vetrovec
  • Patent number: 11333414
    Abstract: The invention is for an apparatus and method for a refrigerator and a heat pump based on the magnetocaloric effect (MCE) offering a simpler, lighter, robust, more compact, environmentally compatible, and energy efficient alternative to traditional vapor-compression devices. The subject magnetocaloric apparatus alternately exposes portions of an MCE material to strong and weak magnetic field while coordinating the heat flow between the exposed portions by heat bridges to move the heat up the thermal gradient. The invention may be practiced with multiple MCE material portions or segments to attain large differences in temperature. Key applications include thermal management of electronics, as well as industrial and home refrigeration, heating, and air conditioning. The invention offers a simpler, lighter, compact, and robust apparatus compared to magnetocaloric devices of prior art.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: May 17, 2022
    Inventor: Jan Vetrovec
  • Publication number: 20200182517
    Abstract: The invention is for an apparatus and method for a refrigerator and a heat pump based on the magnetocaloric effect (MCE) offering a simpler, lighter, robust, more compact, environmentally compatible, and energy efficient alternative to traditional vapor-compression devices. The subject magnetocaloric apparatus alternately exposes portions of an MCE material to strong and weak magnetic field while coordinating the heat flow between the exposed portions by heat bridges to move the heat up the thermal gradient. The invention may be practiced with multiple MCE material portions or segments to attain large differences in temperature. Key applications include thermal management of electronics, as well as industrial and home refrigeration, heating, and air conditioning. The invention offers a simpler, lighter, compact, and robust apparatus compared to magnetocaloric devices of prior art.
    Type: Application
    Filed: January 27, 2020
    Publication date: June 11, 2020
    Inventor: Jan Vetrovec
  • Patent number: 10544965
    Abstract: The invention is for an apparatus and method for a refrigerator and a heat pump based on the magnetocaloric effect (MCE) offering a simpler, lighter, robust, more compact, environmentally compatible, and energy efficient alternative to traditional vapor-compression devices. The subject magnetocaloric apparatus alternately exposes a magnetocaloric material to strong and weak magnetic field while switching heat to and from the material. Action of the heat switches is coordinated with the magnetic field strength to move heat up the thermal gradient. The invention may be practiced with multiple magnetocaloric stages to attain large differences in temperature. Key applications include thermal management of electronics, as well as industrial and home refrigeration, heating, and air conditioning. The invention offers a simpler, lighter, compact, and robust apparatus compared to magnetocaloric devices of prior art.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: January 28, 2020
    Inventor: Jan Vetrovec
  • Patent number: 10436481
    Abstract: The invention is for an apparatus and method for a refrigerator and a heat pump based on the magnetocaloric effect (MCE) offering a simpler, lighter, robust, more compact, environmentally compatible, and energy efficient alternative to traditional vapor-compression devices. The subject magnetocaloric apparatus alternately exposes a suitable magnetocaloric material to strong and weak magnetic field while switching heat to and from the material by a mechanical commutator comprising heat pipe elements. The invention may be practiced with multiple magnetocaloric stages to attain large differences in temperature. Key applications include thermal management of electronics, as well as industrial and home refrigeration, heating, and air conditioning. The invention offers a simpler, lighter, compact, and robust apparatus compared to magnetocaloric devices of prior art. Furthermore, the invention may be run in reverse as a thermodynamic engine, receiving low-level heat and producing mechanical energy.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: October 8, 2019
    Inventor: Jan Vetrovec
  • Publication number: 20180045437
    Abstract: The invention is for an apparatus and method for a refrigerator and a heat pump based on the magnetocaloric effect (MCE) offering a simpler, lighter, robust, more compact, environmentally compatible, and energy efficient alternative to traditional vapor-compression devices. The subject magnetocaloric apparatus alternately exposes a magnetocaloric material to strong and weak magnetic field while switching heat to and from the material. Action of the heat switches is coordinated with the magnetic field strength to move heat up the thermal gradient. The invention may be practiced with multiple magnetocaloric stages to attain large differences in temperature. Key applications include thermal management of electronics, as well as industrial and home refrigeration, heating, and air conditioning. The invention offers a simpler, lighter, compact, and robust apparatus compared to magnetocaloric devices of prior art.
    Type: Application
    Filed: August 15, 2017
    Publication date: February 15, 2018
    Inventor: Jan Vetrovec
  • Publication number: 20170363333
    Abstract: The invention is for an apparatus and method for a refrigerator and a heat pump based on the magnetocaloric effect (MCE) offering a simpler, lighter, robust, more compact, environmentally compatible, and energy efficient alternative to traditional vapor-compression devices. The subject magnetocaloric apparatus alternately exposes a suitable magnetocaloric material to strong and weak magnetic field while switching heat to and from the material by a mechanical commutator comprising heat pipe elements. The invention may be practiced with multiple magnetocaloric stages to attain large differences in temperature. Key applications include thermal management of electronics, as well as industrial and home refrigeration, heating, and air conditioning. The invention offers a simpler, lighter, compact, and robust apparatus compared to magnetocaloric devices of prior art. Furthermore, the invention may be run in reverse as a thermodynamic engine, receiving low-level heat and producing mechanical energy.
    Type: Application
    Filed: May 15, 2017
    Publication date: December 21, 2017
    Inventor: Jan Vetrovec
  • Patent number: 9702594
    Abstract: The invention is for an apparatus and method for a refrigerator and a heat pump based on the magnetocaloric effect (MCE) offering a simpler, lighter, robust, more compact, environmentally compatible, and energy efficient alternative to traditional vapor-compression devices. The subject magnetocaloric apparatus alternately exposes a suitable magnetocaloric material to strong and weak magnetic field while switching heat to and from the material by a mechanical commutator using a thin layer of suitable thermal interface fluid to enhance heat transfer. The invention may be practiced with multiple magnetocaloric stages to attain large differences in temperature. Key applications include thermal management of electronics, as well as industrial and home refrigeration, heating, and air conditioning. The invention offers a simpler, lighter, compact, and robust apparatus compared to magnetocaloric devices of prior art.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: July 11, 2017
    Assignee: AIP MANAGEMENT, LLC
    Inventor: Jan Vetrovec
  • Patent number: 9490604
    Abstract: A laser system including two laser amplifier modules, each comprising a solid-state laser gain material (LGM) disk, and a multi-pass optical assembly comprising a plurality of relay mirrors. The relay mirrors are grouped in two relay mirror groups. Individual relay mirrors are arranged to pass a laser beam from the first LGM disk to the second LGM disk and back to the first LGM disk, and so on. The laser beam is amplified with each pass through the LGM disk. The relay mirrors may be arranged to repeat the process of passing the laser beam to and from the two LGM disks arbitrary number of times until the desired laser beam amplification is attained. At that point, the laser beam may either released from the laser system, reflected back causing it to retrace its path through the system. This configuration increases the effective gain and improves laser power extraction.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: November 8, 2016
    Inventor: Jan Vetrovec
  • Publication number: 20150345519
    Abstract: The present invention is for an apparatus and method for an actuator using an magnetohydrodynamic (MHD) pump to electrically generate a hydraulic pressure and a flow in a liquid metal, thereby causing the liquid metal to act on and extend an expansion member such as extend bellows, membrane, rolling diaphragm, or a piston in a cylinder. The resulting mechanical displacement of the expansion member may be beneficially used to exert a force, pressure, and/or to move elements of a machine. In particular, mechanical displacement (stroke) of the actuator may actuate elements of a humanoid robot, or artificial limb prosthetic, or flight control surfaces of an aircraft. The actuator may be arranged to operate bi-directionally by reversing the polarity of the electric current supplied to the MHD pump. Force exerted by the MHD actuator may be controlled by varying the electric current of the MHD pump drive current.
    Type: Application
    Filed: May 27, 2014
    Publication date: December 3, 2015
    Inventor: Jan Vetrovec
  • Publication number: 20150219122
    Abstract: The invention is for an apparatus and method for pumping of electrically conductive liquids such as liquid metals and electrolytes. The apparatus of the present invention is a self-contained direct current (DC) magneto-hydrodynamic (MHD) pump assembly formed by an upper core assembly, lower core assembly, and a flow channel. The flow channel is formed when the upper core assembly and the lower core assembly are put together. Permanent magnets are used to produce magnetic field inside the flow channel. When the flow channel is filled with electrically conductive liquid, the liquid comes into contact with electrodes within the lower core assembly. The electrodes may be used to draw electric current through the liquid, thereby generating MHD force onto it. As a result, a pressure may be generated within the liquid and/or the liquid may be caused to flow.
    Type: Application
    Filed: February 3, 2014
    Publication date: August 6, 2015
    Inventor: Jan Vetrovec
  • Publication number: 20140293542
    Abstract: The invention is for an apparatus and method for removal of waste heat at high-flux from electronic, photonic, and other components. The apparatus of the present invention is a self-contained unit comprising a closed flow loop flowing liquid metal coolant pumped by an integral magneto-hydrodynamic (MHD) pump. Liquid metal coolant flow is arranged to impinge onto a thin member mounting a heat load. Impinging flow of liquid metal coolant offers a high heat transfer coefficient, which translates to comparably low thermal resistance between the heat load and the liquid metal coolant. As a result, the apparatus may remove heat from the heat load at very high flux. Waste heat acquired from the heat load may be transferred at reduced flux into a flowing secondary coolant, heat pipe, structure, or a radiation panel. Temperature of the heat load may be varied by varying the MHD pump drive current.
    Type: Application
    Filed: March 30, 2013
    Publication date: October 2, 2014
    Inventor: Jan Vetrovec
  • Publication number: 20120273164
    Abstract: The invention is for an apparatus and method for removal of waste heat from heat-generating components including high-power solid-state analog electronics such as being developed for hybrid-electric vehicles, solid-state digital electronics, light-emitting diodes for solid-state lighting, semiconductor laser diodes, photo-voltaic cells, anodes for x-ray tubes, and solids-state laser crystals. Liquid coolant is flowed in one or more closed channels having a substantially constant radius of curvature. Suitable coolants include liquid metals and liquids with low vapor pressure. The former may be flowed by magneto-hydrodynamic effect or by electromagnetic induction. The latter may be flowed by magnetic forces. Alternatively, an arbitrary liquid coolant may be used and flowed by an impeller operated by electromagnetic induction or by magnetic forces. The coolant may be flowed at very high velocity to produce very high heat transfer rates and allow for heat removal at very high flux.
    Type: Application
    Filed: February 13, 2012
    Publication date: November 1, 2012
    Inventor: Jan Vetrovec
  • Patent number: 8268649
    Abstract: A laser system may include a first portion of laser host material adapted for amplification of laser radiation and a second portion of laser host material surrounding the first portion which may be adapted for suppression of ASE. The first portion of laser host material and the second portion of laser host material may be respectively doped at a different predetermined concentration of laser ions. A heat exchanger may be provided to dissipate heat from the first portion and the second portion.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: September 18, 2012
    Assignee: The Boeing Company
    Inventor: Jan Vetrovec
  • Publication number: 20120155503
    Abstract: A laser system including two laser amplifier modules, each comprising a solid-state laser gain material (LGM) disk, and a multi-pass optical assembly comprising a plurality of relay mirrors. The relay mirrors are grouped in two relay mirror groups. Individual relay mirrors are arranged to pass a laser beam from the first LGM disk to the second LGM disk and back to the first LGM disk, and so on. The laser beam is amplified with each pass through the LGM disk. The relay mirrors may be arranged to repeat the process of passing the laser beam to and from the two LGM disks arbitrary number of times until the desired laser beam amplification is attained. At that point, the laser beam may either released from the laser system, reflected back causing it to retrace its path through the system. This configuration increases the effective gain and improves laser power extraction.
    Type: Application
    Filed: January 24, 2011
    Publication date: June 21, 2012
    Inventor: Jan Vetrovec
  • Publication number: 20120060512
    Abstract: The invention is for an apparatus and method for a refrigerator and a heat pump based on the magnetocaloric effect (MCE) offering a simpler, lighter, robust, more compact, environmentally compatible, and energy efficient alternative to traditional vapor-compression devices. The subject magnetocaloric apparatus alternately exposes a suitable magnetocaloric material to strong and weak magnetic field while switching heat to and from the material by a mechanical commutator using a thin layer of suitable thermal interface fluid to enhance heat transfer. The invention may be practiced with multiple magnetocaloric stages to attain large differences in temperature. Key applications include thermal management of electronics, as well as industrial and home refrigeration, heating, and air conditioning. The invention offers a simpler, lighter, compact, and robust apparatus compared to magnetocaloric devices of prior art.
    Type: Application
    Filed: June 6, 2011
    Publication date: March 15, 2012
    Inventor: Jan Vetrovec
  • Publication number: 20120060513
    Abstract: The invention is for an apparatus and method for a refrigerator and a heat pump based on the magnetocaloric effect (MCE) offering a simpler, lighter, robust, more compact, environmentally compatible, and energy efficient alternative to traditional vapor-compression devices. The subject magnetocaloric apparatus alternately exposes a suitable magnetocaloric material to strong and weak magnetic field while switching heat to and from the material by a mechanical commutator using a thin layer of suitable thermal interface fluid to enhance heat transfer. The invention may be practiced with multiple magnetocaloric stages to attain large differences in temperature. Key applications include thermal management of electronics, as well as industrial and home refrigeration, heating, and air conditioning. The invention offers a simpler, lighter, compact, and robust apparatus compared to magnetocaloric devices of prior art.
    Type: Application
    Filed: June 7, 2011
    Publication date: March 15, 2012
    Inventor: Jan Vetrovec
  • Publication number: 20120031109
    Abstract: The invention is for an apparatus and method for a refrigerator and a heat pump based on the magnetocaloric effect (MCE) offering a simpler, lighter, robust, more compact, environmentally compatible, and energy efficient alternative to traditional vapor-compression devices. The subject magnetocaloric apparatus alternately exposes a suitable magnetocaloric material to strong and weak magnetic field while switching heat to and from the material by a mechanical commutator using a thin layer of suitable thermal interface fluid to enhance heat transfer. The invention may be practiced with multiple magnetocaloric stages to attain large differences in temperature. Key applications include thermal management of electronics, as well as industrial and home refrigeration, heating, and air conditioning. The invention offers a simpler, lighter, compact, and robust apparatus compared to magnetocaloric devices of prior art.
    Type: Application
    Filed: June 7, 2011
    Publication date: February 9, 2012
    Inventor: Jan Vetrovec
  • Patent number: 8078385
    Abstract: A supercharged internal combustion engine system wherein during periods of high power demand the weight of combustion chamber charge is increased by cooling a portion of intake air in a turboexpander using high-pressure air from a storage tank. In addition to increasing engine output power, cold air intake also reduces engine pre-ignition (knocking) thereby reducing emissions. Mechanical energy produced during expansion of high-pressure air may be used to operate a turbocompressor, which compresses intake air and further increases charge weight. Effective supercharging is achieved even at low engine speeds. One of the objects of the invention is to obtain more power from small displacement ICE and thus providing automotive vehicles with sufficient acceleration in addition to good fuel economy. Another object of the invention is to enhance turbocharged engines and reduce their response lag. Air storage tank may be recharged using energy recovered during vehicle deceleration.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: December 13, 2011
    Assignee: Aqwest LLC
    Inventor: Jan Vetrovec