Patents by Inventor Jan Wagner

Jan Wagner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12002168
    Abstract: A method for reducing motion-to-photon latency for hand tracking is described. In one aspect, a method includes accessing a first frame from a camera of an Augmented Reality (AR) device, tracking a first image of a hand in the first frame, rendering virtual content based on the tracking of the first image of the hand in the first frame, accessing a second frame from the camera before the rendering of the virtual content is completed, the second frame immediately following the first frame, tracking, using the computer vision engine of the AR device, a second image of the hand in the second frame, generating an annotation based on tracking the second image of the hand in the second frame, forming an annotated virtual content based on the annotation and the virtual content, and displaying the annotated virtual content in a display of the AR device.
    Type: Grant
    Filed: June 20, 2022
    Date of Patent: June 4, 2024
    Assignee: Snap Inc.
    Inventors: Jan Bajana, Bernhard Jung, Daniel Wagner
  • Patent number: 11990408
    Abstract: Embodiments disclosed herein include electronic packages. In an embodiment, an electronic package comprises a redistribution layer (RDL) having a conductive layer in a first dielectric layer, and a second dielectric layer over the conductive and first dielectric layers. The RDL comprises an extended portion having a first thickness that vertically extends from a bottom surface of the first dielectric layer to a topmost surface of the second dielectric layer. The electronic package comprises a die on the RDL, where the die has sidewall surfaces, a top surface, and a bottom surface that is opposite from the top surface, and an active region on the bottom surface of the die. The first thickness is greater than a second thickness of the RDL that vertically extends from the bottom surface of the first dielectric layer to the bottom surface of the die. The extended portion is over and around the sidewall surfaces.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: May 21, 2024
    Assignee: Intel Corporation
    Inventors: Thomas Wagner, Jan Proschwitz
  • Publication number: 20240096026
    Abstract: A method for reducing motion-to-photon latency for hand tracking is described. In one aspect, a method includes accessing a first frame from a camera of an Augmented Reality (AR) device, tracking a first image of a hand in the first frame, rendering virtual content based on the tracking of the first image of the hand in the first frame, accessing a second frame from the camera before the rendering of the virtual content is completed, the second frame immediately following the first frame, tracking, using the computer vision engine of the AR device, a second image of the hand in the second frame, generating an annotation based on tracking the second image of the hand in the second frame, forming an annotated virtual content based on the annotation and the virtual content, and displaying the annotated virtual content in a display of the AR device.
    Type: Application
    Filed: June 20, 2022
    Publication date: March 21, 2024
    Inventors: Jan Bajana, Bernhard Jung, Daniel Wagner
  • Publication number: 20240085485
    Abstract: A method for determining the parameters of an equivalent circuit for representation of the impedance of a lithium ion cell is provided. The equivalent circuit includes at least one RC element having an ohmic resistor R1, a capacitor C1, and a series resistor Rs. The series resistor Rs is determined by an impedance measurement.
    Type: Application
    Filed: September 24, 2020
    Publication date: March 14, 2024
    Inventors: Stefan ROEMERSPERGER, Jan Philipp SCHMIDT, Tobias THIEM, Christopher WAGNER
  • Publication number: 20230283040
    Abstract: The invention relates to a method for producing a radiation-emitting semiconductor body, including the following steps: providing a growth substrate having a main surface; producing a plurality of distributor structures on the main surface of the growth substrate; epitaxially depositing a compound semiconductor material on the main surface of the growth substrate, wherein the epitaxial growth of the compound semiconductor material varies along the main surface because of the distributor structures, such that the epitaxial deposition produces an epitaxial semiconductor layer sequence having at least a first emitter region and a second emitter region on the main surface, the first emitter region and the second emitter region being laterally adjacent to each other in a top view of a main surface of the semiconductor body, and the first emitter region and the second emitter region producing electromagnetic radiation of different wavelength ranges during operation.
    Type: Application
    Filed: July 20, 2021
    Publication date: September 7, 2023
    Applicant: ams-OSRAM International GmbH
    Inventors: Jan Wagner, Lars Naehle, Sven Gerhard, Alfred Lell, Harald Koenig, Christoph Eichler, Georg BrĂ¼derl, Martin Rudolf Behringer
  • Publication number: 20220013990
    Abstract: In an embodiment an edge-emitting semiconductor laser includes a semiconductor layer sequence having a waveguide region with an active layer disposed between a first waveguide layer and a second waveguide layer and a layer system arranged outside the waveguide region configured to reduce facet defects in the waveguide region, wherein the layer system includes one or more layers with the material composition AlxInyGa1-x-yN with 0?x?1, 0?y<1 and x+y?1, wherein at least one layer of the layer system includes an aluminum portion x?0.05 or an indium portion y?0.02, wherein a layer strain is at least 2 GPa at least in some areas, and wherein the semiconductor layer sequence is based on a nitride compound semiconductor material.
    Type: Application
    Filed: November 12, 2019
    Publication date: January 13, 2022
    Inventors: Jan Wagner, Werner Bergbauer, Christoph Eichler, Alfred Lell, Georg BrĂ¼derl, Matthias Peter
  • Patent number: 11056857
    Abstract: A laser diode having a semiconductor layer sequence based on a nitride compound semiconductor material includes an n-type cladding layer, a first waveguide layer, a second waveguide layer and an active layer, and a p-type cladding layer including a first partial layer and a second partial layer, wherein the first partial layer includes Alx1Ga1-x1N with 0?x1?1 or Alx1Iny1Ga1-x1-y1N with 0?x1?1, 0?y1<1 and x1+y1?1, the aluminum content x1 decreases in a direction pointing away from the active layer so that the aluminum content has a maximum value x1max and a minimum value x1min<x1max, and the second partial layer includes Alx2Ga1-x2N with 0?x2?x1min or Alx2Iny2Ga1-x2-y2N with 0?x2?x1min, 0?y2<1 and x2+y2?1.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: July 6, 2021
    Assignee: OSRAM OLED GmbH
    Inventors: Christoph Eichler, Matthias Peter, Jan Wagner
  • Publication number: 20210071089
    Abstract: An enhanced natural gas processing method using Fischer-Tropsch (FT) process for the synthesis of sulfur free, clean burning, hydrocarbon fuels, examples of which include syndiesel and aviation fuel. A selection of natural gas, separately or combined with portions of natural gas liquids and FT naphtha and FT vapours are destroyed in a syngas generator and used or recycled as feedstock to an Fischer-Tropsch (FT) reactor in order to enhance the production of syndiesel from the reactor. The process enhancement results are the maximum production of formulated syndiesel without the presence or formation of low value by-products.
    Type: Application
    Filed: May 21, 2020
    Publication date: March 11, 2021
    Applicant: Expander Energy Inc.
    Inventors: Steve Kresnyak, Steve Price, Jan Wagner
  • Publication number: 20200220330
    Abstract: A laser diode having a semiconductor layer sequence based on a nitride compound semiconductor material includes an n-type cladding layer, a first waveguide layer, a second waveguide layer and an active layer, and a p-type cladding layer including a first partial layer and a second partial layer, wherein the first partial layer includes Alx1Ga1-x1N with 0?x1?1 or Alx1Iny1Ga1-x1-y1N with 0?x1?1, 0?y1<1 and x1+y1?1, the aluminum content x1 decreases in a direction pointing away from the active layer so that the aluminum content has a maximum value x1max and a minimum value x1min?x1max, and the second partial layer includes Alx2Ga1-x2N with 0?x2?x1min or Alx2Iny2Ga1-x2-y2N with 0?x2?x1min, 0?y2<1 and x2+y2?1.
    Type: Application
    Filed: September 19, 2018
    Publication date: July 9, 2020
    Inventors: Christoph Eichler, Matthias Peter, Jan Wagner
  • Publication number: 20180223192
    Abstract: An enhanced natural gas processing method using Fischer-Tropsch (FT) process for the synthesis of sulfur free, clean burning, hydrocarbon fuels, examples of which include syndiesel and aviation fuel. A selection of natural gas, separately or combined with portions of natural gas liquids and FT naphtha and FT vapours are destroyed in a syngas generator and used or recycled as feedstock to an Fischer-Tropsch (FT) reactor in order to enhance the production of syndiesel from the reactor. The process enhancement results are the maximum production of formulated syndiesel without the presence or formation of low value by-products.
    Type: Application
    Filed: April 4, 2018
    Publication date: August 9, 2018
    Applicant: Expander Energy Inc.
    Inventors: Steve Kresnyak, Steve Price, Jan Wagner
  • Publication number: 20160096997
    Abstract: An enhanced natural gas processing method using Fischer-Tropsch (FT) process for the synthesis of sulfur free, clean burning, hydrocarbon fuels, examples of which include syndiesel and aviation fuel. A selection of natural gas, separately or combined with portions of natural gas liquids and FT naphtha and FT vapours are destroyed in a syngas generator and used or recycled as feedstock to an Fischer-Tropsch (FT) reactor in order to enhance the production of syndiesel from the reactor. The process enhancement results are the maximum production of formulated syndiesel without the presence or formation of low value by-products.
    Type: Application
    Filed: December 11, 2015
    Publication date: April 7, 2016
    Applicant: Expander Energy, Inc.
    Inventors: Steve Kresnyak, Steve Price, Jan Wagner