Patents by Inventor Jani Tervo

Jani Tervo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10698214
    Abstract: An optical waveguide including an input-coupler, a first intermediate-component, a second intermediate-component and an output-coupler is described herein. The input-coupler couples, into the waveguide, light corresponding to an image associated with an input-pupil and directs the light toward the first intermediate-component. The first intermediate-component performs horizontal or vertical pupil expansion and redirects the light corresponding to the image toward the output-coupler. The second intermediate-component is a diffractive component located between the first-intermediate component and the output-coupler and performs pupil redistribution on a portion of the light corresponding to the image before the portion reaches the output-coupler. The output-coupler performs the other one of horizontal or vertical pupil expansion and couples, out of the waveguide, the light corresponding to the image. Related methods and systems are also described.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: June 30, 2020
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Tuomas Vallius, Jani Tervo
  • Patent number: 10353202
    Abstract: An apparatus having optical waveguides for providing a large FOV is disclosed. A first light engine projects light into an input diffractive coupler of a first waveguide at a first central angle. An output coupler of the first waveguide projects the light out of the first optical waveguide. A second light engine projects light into an input diffractive coupler of a second waveguide at a second central angle that is greater than the first central angle. An output coupler of the second waveguide projects the light out of the second optical waveguide to intersect with the light projected out of the first optical waveguide. The first waveguide may be used to project a first part of an image into a central portion of a user's vision. The second waveguide may be used to project a second part of the image into a peripheral portion of the user's vision.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: July 16, 2019
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Jani Tervo, Tuomas Vallius
  • Patent number: 10067347
    Abstract: An apparatus for use in replicating an image associated with an input-pupil to an output-pupil, comprises an optical waveguide including input-coupler, one or more intermediate-components and an output-coupler. The input-coupler couples light corresponding to the image into the optical waveguide and diffracts the light corresponding to the image in at least two different directions so that light corresponding to the image is diffracted toward each of the one or more intermediate-components. The intermediate-component(s) is/are configured to individually or collectively perform both odd-order pupil expansion and even-order pupil expansion on light corresponding to the image that travels from the input-coupler to the one or more intermediate-components by way of TIR, and diffract the light corresponding to the image towards the output-coupler.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: September 4, 2018
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Tuomas Vallius, Jani Tervo, Pasi Pietila
  • Publication number: 20180203230
    Abstract: An optical waveguide including an input-coupler, a first intermediate-component, a second intermediate-component and an output-coupler is described herein. The input-coupler couples, into the waveguide, light corresponding to an image associated with an input-pupil and directs the light toward the first intermediate-component. The first intermediate-component performs horizontal or vertical pupil expansion and redirects the light corresponding to the image toward the output-coupler. The second intermediate-component is a diffractive component located between the first-intermediate component and the output-coupler and performs pupil redistribution on a portion of the light corresponding to the image before the portion reaches the output-coupler. The output-coupler performs the other one of horizontal or vertical pupil expansion and couples, out of the waveguide, the light corresponding to the image. Related methods and systems are also described.
    Type: Application
    Filed: January 17, 2017
    Publication date: July 19, 2018
    Inventors: Tuomas Vallius, Jani Tervo
  • Publication number: 20170357089
    Abstract: An apparatus having optical waveguides for providing a large FOV is disclosed. A first light engine projects light into an input diffractive coupler of a first waveguide at a first central angle. An output coupler of the first waveguide projects the light out of the first optical waveguide. A second light engine projects light into an input diffractive coupler of a second waveguide at a second central angle that is greater than the first central angle. An output coupler of the second waveguide projects the light out of the second optical waveguide to intersect with the light projected out of the first optical waveguide. The first waveguide may be used to project a first part of an image into a central portion of a user's vision. The second waveguide may be used to project a second part of the image into a peripheral portion of the user's vision.
    Type: Application
    Filed: June 9, 2016
    Publication date: December 14, 2017
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Jani Tervo, Tuomas Vallius
  • Publication number: 20170299865
    Abstract: An apparatus for use in replicating an image associated with an input-pupil to an output-pupil, comprises an optical waveguide including input-coupler, one or more intermediate-components and an output-coupler. The input-coupler couples light corresponding to the image into the optical waveguide and diffracts the light corresponding to the image in at least two different directions so that light corresponding to the image is diffracted toward each of the one or more intermediate-components. The intermediate-component(s) is/are configured to individually or collectively perform both odd-order pupil expansion and even-order pupil expansion on light corresponding to the image that travels from the input-coupler to the one or more intermediate-components by way of TIR, and diffract the light corresponding to the image towards the output-coupler.
    Type: Application
    Filed: April 13, 2016
    Publication date: October 19, 2017
    Inventors: Tuomas Vallius, Jani Tervo, Pasi Pietila
  • Publication number: 20170299864
    Abstract: An input-coupler of an optical waveguide couples light corresponding to the image and having a corresponding FOV into the optical waveguide, and the input-coupler splits the FOV of the image coupled into the optical waveguide into first and second portions by diffracting a portion of the light corresponding to the image in a first direction toward a first intermediate-component, and diffracting a portion of the light corresponding to the image in a second direction toward a second intermediate-component. An output-coupler of the waveguide combines the light corresponding to the first and second portions of the FOV, and couples the light corresponding to the combined first and second portions of the FOV out of the optical waveguide so that the light corresponding to the image and the combined first and second portions of the FOV is output from the optical waveguide. The intermediate-components and the output-coupler also provide for pupil expansion.
    Type: Application
    Filed: April 13, 2016
    Publication date: October 19, 2017
    Applicant: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Tuomas Vallius, Jani Tervo
  • Patent number: 9791703
    Abstract: An input-coupler of an optical waveguide couples light corresponding to the image and having a corresponding FOV into the optical waveguide, and the input-coupler splits the FOV of the image coupled into the optical waveguide into first and second portions by diffracting a portion of the light corresponding to the image in a first direction toward a first intermediate-component, and diffracting a portion of the light corresponding to the image in a second direction toward a second intermediate-component. An output-coupler of the waveguide combines the light corresponding to the first and second portions of the FOV, and couples the light corresponding to the combined first and second portions of the FOV out of the optical waveguide so that the light corresponding to the image and the combined first and second portions of the FOV is output from the optical waveguide. The intermediate-components and the output-coupler also provide for pupil expansion.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: October 17, 2017
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Tuomas Vallius, Jani Tervo