Patents by Inventor Jar J. Lee

Jar J. Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9893430
    Abstract: A coincident phased dual-polarized antenna array configured to emit electromagnetic radiation includes: a plurality of electromagnetic radiators arranged in a grid, the plurality of electromagnetic radiators defining a plurality of notches; a ground plane spaced from the electromagnetic radiators; a conductive layer disposed between the electromagnetic radiators and the ground plane, the conductive layer having a plurality of slots laterally offset from the notches and being spaced apart from and electrically insulated from the electromagnetic radiators; and a plurality of feeds, each of the feeds spanning a corresponding slot of the slots and electrically connected to a portion of the conductive layer at one side of the corresponding slot.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: February 13, 2018
    Assignee: RAYTHEON COMPANY
    Inventors: Allen T. S. Wang, Fangchou Yang, Jar J. Lee, Jason G. Milne
  • Patent number: 9343816
    Abstract: An antenna array includes a plurality of radiating elements disposed on a layer that is situated above an egg crate structure that is formed of interconnected dielectric panels. In some embodiments, balun circuitry is disposed on at least some of the dielectric panels of the egg crate structure for use in feeding corresponding radiating elements of the array in a balanced manner. Ground plane blocks may also be coupled to some or all of the dielectric panels to provide circuit shielding and/or to form a ground plane for the array antenna.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: May 17, 2016
    Assignee: Raytheon Company
    Inventors: Jar J. Lee, Stan W. Livingston
  • Patent number: 9316723
    Abstract: An integrated differential high power amplifier-radiator array that overcomes the prior art impedance match issues is described. An impedance matching balun is used to feed a high output impedance, differential HPA, which in turn drives a wide band radiator or array of radiators having a matching input impedance to provide a highly efficient, compact transmit system. In one exemplary embodiment, the HPA may be a high impedance Class-B HPA configured as a push-pull cascode amplifier. A high impedance isolator or circulator may be used between the HPA and the radiator. One of ordinary skill in the art will readily appreciate that a receive implementation, using a properly matched low noise amplifier in place of the HPA, is also possible. Similarly, with the addition of a slotline circulator, transceiver operation is also attainable with the addition of an impedance matched receive chain.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: April 19, 2016
    Assignee: RAYTHEON COMPANY
    Inventors: Reza Tayrani, Walter B. Schulte, Jr., James A. Carr, Jar J. Lee
  • Publication number: 20150077300
    Abstract: A coincident phased dual-polarized antenna array configured to emit electromagnetic radiation includes: a plurality of electromagnetic radiators arranged in a grid, the plurality of electromagnetic radiators defining a plurality of notches; a ground plane spaced from the electromagnetic radiators; a conductive layer disposed between the electromagnetic radiators and the ground plane, the conductive layer having a plurality of slots laterally offset from the notches and being spaced apart from and electrically insulated from the electromagnetic radiators; and a plurality of feeds, each of the feeds spanning a corresponding slot of the slots and electrically connected to a portion of the conductive layer at one side of the corresponding slot.
    Type: Application
    Filed: September 17, 2013
    Publication date: March 19, 2015
    Applicant: Raytheon Company
    Inventors: Allen T.S. Wang, Fangchou Yang, Jar J. Lee, Jason G. Milne
  • Patent number: 8923924
    Abstract: A system and method for processing antenna signals are provided. For example, the method includes, in a receive mode, weighting and combining signals from at least one low-band antenna radiator element operable over a first bandwidth, at least one high-band antenna radiator element operable over a second bandwidth at least partially overlapping the first bandwidth, and, in some examples, at least one antenna radiator element operable over one or more intermediate bandwidths. The method also includes, in a transmit mode, separating and weighting a full-band input port signal into at least one low-band sub-system output port signal, at least one high-band sub-system port output signal, and, in some examples, at least one intermediate sub-system output port signal operable over one or more overlapping intermediate bandwidths. The weighted combination and weighted separation cover an uninterrupted continuous full-band frequency whose extent covers the full frequency range of all subbands.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: December 30, 2014
    Assignee: Raytheon Company
    Inventors: Victor S. Reinhardt, Jar J. Lee, Fangchou Yang
  • Publication number: 20140302807
    Abstract: An antenna array includes a plurality of radiating elements disposed on a layer that is situated above an egg crate structure that is formed of interconnected dielectric panels. In some embodiments, balun circuitry is disposed on at least some of the dielectric panels of the egg crate structure for use in feeding corresponding radiating elements of the array in a balanced manner. Ground plane blocks may also be coupled to some or all of the dielectric panels to provide circuit shielding and/or to form a ground plane for the array antenna.
    Type: Application
    Filed: April 9, 2013
    Publication date: October 9, 2014
    Applicant: Raytheon Company
    Inventors: Jar J. Lee, Stan W. Livingston
  • Publication number: 20140179240
    Abstract: A system and method for processing antenna signals are provided. For example, the method includes, in a receive mode, weighting and combining signals from at least one low-band antenna radiator element operable over a first bandwidth, at least one high-band antenna radiator element operable over a second bandwidth at least partially overlapping the first bandwidth, and, in some examples, at least one antenna radiator element operable over one or more intermediate bandwidths. The method also includes, in a transmit mode, separating and weighting a full-band input port signal into at least one low-band sub-system output port signal, at least one high-band sub-system port output signal, and, in some examples, at least one intermediate sub-system output port signal operable over one or more overlapping intermediate bandwidths. The weighted combination and weighted separation cover an uninterrupted continuous full-band frequency whose extent covers the full frequency range of all subbands.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Applicant: RAYTHEON COMPANY
    Inventors: Victor S. REINHARDT, Jar J. LEE, Fangchou YANG
  • Publication number: 20130314288
    Abstract: An integrated differential high power amplifier-radiator array that overcomes the prior art impedance match issues is described. An impedance matching balun is used to feed a high output impedance, differential HPA, which in turn drives a wide band radiator or array of radiators having a matching input impedance to provide a highly efficient, compact transmit system. In one exemplary embodiment, the HPA may be a high impedance Class-B HPA configured as a push-pull cascode amplifier. A high impedance isolator or circulator may be used between the HPA and the radiator. One of ordinary skill in the art will readily appreciate that a receive implementation, using a properly matched low noise amplifier in place of the HPA, is also possible. Similarly, with the addition of a slotline circulator, transceiver operation is also attainable with the addition of an impedance matched receive chain.
    Type: Application
    Filed: May 24, 2012
    Publication date: November 28, 2013
    Applicant: RAYTHEON COMPANY
    Inventors: Reza TAYRANI, Walter B. SCHULTE, JR., James A. CARR, Jar J. LEE
  • Patent number: 8390520
    Abstract: A dual-patch antenna includes a ground plane, a first patch plate parallel to and separated from the ground plane by a separation distance, and a second patch plate separated from the ground plane by the separation distance. The first and second patch plates are coplanar and separated by a radiating slot. An excitation probe isolatedly passes through the ground plane and connects to the first patch plate. A first wall connects an edge of the first patch plate to the ground plane. The first wall is located approximately ¼ wavelength of a mid-band operating frequency from the radiating slot. A second wall connects an edge of the second patch plate to the ground plane. The second wall is located approximately ¼ wavelength of the mid-band operating frequency from the radiating slot. The dual-patch antennas may be organized in an array.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: March 5, 2013
    Assignee: Raytheon Company
    Inventors: Jar J. Lee, Fangchou Yang, Stan W. Livingston, Jeffrey B. Weber
  • Patent number: 8378905
    Abstract: A space-fed conformal array for a high altitude airship includes a primary array lens assembly adapted for conformal mounting to a non-planar airship surface. The lens assembly includes a first set of radiator elements and a second set of radiator elements, the first set and the second set spaced apart by a spacing distance. The first set of radiators faces outwardly from the airship surface to provide a radiating aperture. The second set of radiators faces inwardly toward an inner space of the airship, for illumination by a feed array spaced from the second set of radiators.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: February 19, 2013
    Assignee: Raytheon Company
    Inventors: Jar J. Lee, Clifton Quan, Stanley W. Livingston
  • Publication number: 20110221644
    Abstract: A dual-patch antenna includes a ground plane, a first patch plate parallel to and separated from the ground plane by a separation distance, and a second patch plate separated from the ground plane by the separation distance. The first and second patch plates are coplanar and separated by a radiating slot. An excitation probe isolatedly passes through the ground plane and connects to the first patch plate. A first wall connects an edge of the first patch plate to the ground plane. The first wall is located approximately ¼ wavelength of a mid-band operating frequency from the radiating slot. A second wall connects an edge of the second patch plate to the ground plane. The second wall is located approximately ¼ wavelength of the mid-band operating frequency from the radiating slot. The dual-patch antennas may be organized in an array.
    Type: Application
    Filed: March 11, 2010
    Publication date: September 15, 2011
    Inventors: Jar J. Lee, Fangchou Yang, Stan W. Livingston, Jeffrey B. Weber
  • Patent number: 7994997
    Abstract: In one embodiment, a wide bandwidth, reduced depth transmit/receive antenna array includes unit cells having continuous slots, a transceiver, unbalanced feeds, impedance transformers, and exciters. The continuous slots are formed in a conductive antenna plane, and the transceiver generates and/or receives electrical signals. The unbalanced feeds may be electrically connected between the transceiver and impedance transformers which match the impedance between feed lines and the exciter. They may be located in a plane perpendicular to the direction of propagation of the radiation, and also may be arranged between the conductive antenna plane and a backplane. The exciter spans a continuous slot, and emits and/or receives radiation from the slot. The antenna array is capable of operating without a radome or balun.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: August 9, 2011
    Assignee: Raytheon Company
    Inventors: Stan W. Livingston, Jar J. Lee, Dennis Nagata
  • Publication number: 20100097277
    Abstract: A space-fed conformal array for a high altitude airship includes a primary array lens assembly adapted for conformal mounting to a non-planar airship surface. The lens assembly includes a first set of radiator elements and a second set of radiator elements, the first set and the second set spaced apart by a spacing distance. The first set of radiators faces outwardly from the airship surface to provide a radiating aperture. The second set of radiators faces inwardly toward an inner space of the airship, for illumination by a feed array spaced from the second set of radiators.
    Type: Application
    Filed: August 7, 2009
    Publication date: April 22, 2010
    Inventors: Jar J. Lee, Clifton Quan, Stanley W. Livingston
  • Publication number: 20090322637
    Abstract: In one embodiment, a wide bandwidth, reduced depth transmit/receive antenna array includes unit cells having continuous slots, a transceiver, unbalanced feeds, impedance transformers, and exciters. The continuous slots are formed in a conductive antenna plane, and the transceiver generates and/or receives electrical signals. The unbalanced feeds may be electrically connected between the transceiver and impedance transformers which match the impedance between feed lines and the exciter. They may be located in a plane perpendicular to the direction of propagation of the radiation, and also may be arranged between the conductive antenna plane and a backplane. The exciter spans a continuous slot, and emits and/or receives radiation from the slot. The antenna array is capable of operating without a radome or balun.
    Type: Application
    Filed: June 27, 2008
    Publication date: December 31, 2009
    Applicant: RAYTHEON COMPANY
    Inventors: Stan W. LIVINGSTON, Jar J. LEE, Dennis NAGATA
  • Patent number: 7605767
    Abstract: A space-fed array is selectively operable in a reflective mode or in a feed-through mode. The array includes, in an exemplary embodiment, a primary array; and a feed array. The primary array includes a first side set of radiating elements, a first set of phase shifters, a set of switches, a second set of phase shifters and a second side set of radiating elements. Each of the switches is connected between corresponding ones of the first set and the second set of phase shifters and ground, selectively settable at an open position or at a closed position. The open position corresponds to the feed through mode, and the closed position corresponds to the reflective mode.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: October 20, 2009
    Assignee: Raytheon Company
    Inventors: Jar J. Lee, Clifton Quan, Stanley W. Livingston
  • Patent number: 7595760
    Abstract: A space-fed conformal array for a high altitude airship includes a primary array lens assembly adapted for conformal mounting to a non-planar airship surface. The lens assembly includes a first set of radiator elements and a second set of radiator elements, the first set and the second set spaced apart by a spacing distance. The first set of radiators faces outwardly from the airship surface to provide a radiating aperture. The second set of radiators faces inwardly toward an inner space of the airship, for illumination by a feed array spaced from the second set of radiators.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: September 29, 2009
    Assignee: Raytheon Company
    Inventors: Jar J. Lee, Clifton Quan, Stanley W. Livingston
  • Publication number: 20090128430
    Abstract: A conformal end-fire antenna with a high impedance ground surface structure and an array of radiating elements formed thereon. The ground surface structure includes an array of metal protrusions on a electrically conductive sheet, the metal protrusions arranged in a two-dimensional lattice. The ground surface structure acts as a magnetic surface at an RF frequency band of interest, functioning as an electrical short at DC, and as a mirror which reflects an RF field in the frequency band with virtually no phase reversal.
    Type: Application
    Filed: January 25, 2001
    Publication date: May 21, 2009
    Inventors: Jar J. Lee, Stan W. Livingston
  • Patent number: 7532170
    Abstract: A conformal end-fire antenna with a high impedance ground surface structure and an array of radiating elements formed thereon. The ground surface structure includes an array of metal protrusions on a electrically conductive sheet, the metal protrusions arranged in a two-dimensional lattice. The ground surface structure acts as a magnetic surface at an RF frequency band of interest, functioning as an electrical short at DC, and as a mirror which reflects an RF field in the frequency band with virtually no phase reversal.
    Type: Grant
    Filed: January 25, 2001
    Date of Patent: May 12, 2009
    Assignee: Raytheon Company
    Inventors: Jar J. Lee, Stan W. Livingston
  • Patent number: 7474263
    Abstract: An electronically scanned antenna may include a plurality of space-fed, contiguous subarrays arranged in an annular region, each subarray including an inner set of radiating elements facing inwardly, an outer-facing set of radiating elements, and a feed system for illuminating the inner set of radiating elements. A plurality of RF amplifiers are coupled through a commutation switch matrix to selected ones of the subarray feed horn systems to illuminate a desired sector with RF energy.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: January 6, 2009
    Assignee: Raytheon Company
    Inventors: Robert J. Garfinkle, Joseph E. Wheeler, Donald R. Wells, Jar J. Lee, Richard P. Ritch
  • Publication number: 20080225375
    Abstract: A system for scanning an antenna array of the present invention. The system includes a first mechanism for modulating a desired signal on an optical carrier signal. The first mechanism includes a frequency-tunable optical oscillator with a phase shifter for changing an output frequency of the optical oscillator. A second mechanism employs the optical carrier signal to derive signals having predetermined phase relationships. A third mechanism receives the feed signals and radiates corresponding transmit signals in response thereto to the antenna array to steer the array. In more specific embodiment, the desired signal is a Radio Frequency (RF) signal, and the phase shifter is an electrically controlled optical RF phase shifter. The optical carrier signal includes a first optical carrier signal and a second optical carrier signal.
    Type: Application
    Filed: April 18, 2008
    Publication date: September 18, 2008
    Inventors: Irwin L. Newberg, Steven R. Wilkinson, Jar J. Lee, Robert A. Rosen, Kapriel V. Krikorian