Patents by Inventor Jason Blush

Jason Blush has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190012021
    Abstract: Certain example embodiments relate to capacitive touch panels. First and second glass substrates are substantially parallel and spaced apart from one another. At least one multi-layer transparent conductive coating (TCC) is patterned into electrodes and located between the first and second substrates. The TCC(s) include(s) at least one conductive layer including silver, a dielectric layer including zinc oxide under and directly contacting the conductive layer including silver, and a dielectric layer(s) including tin oxide or silicon nitride over the conductive layer including silver. Processing circuitry electrically connects to the electrodes and measures an aspect of the electrodes' capacitance. A laminate material is located between the first and second glass substrates. The TCC(s), when blanket deposited, may have a visible transmission of at least 88%, a sheet resistances of no more than 10 ohms per square, and a haze of no more than 0.5%. Mutual and self-capacitance designs are disclosed.
    Type: Application
    Filed: September 14, 2018
    Publication date: January 10, 2019
    Inventors: Vijayen S. VEERASAMY, Jason BLUSH, Eric W. AKKASHIAN, Willem DEN BOER, Alexey KRASNOV
  • Publication number: 20180364839
    Abstract: A multi-layer conductive coating is substantially transparent to visible light, contains at least one conductive layer comprising silver that is sandwiched between at least a pair of dielectric layers, and may be used as an electrode and/or conductive trace in a capacitive touch panel. The multi-layer conductive coating may contain a dielectric layer of or including zirconium oxide (e.g., ZrO2) and/or silicon nitride, and may be used in applications such as capacitive touch panels for controlling showers, appliances, vending machines, electronics, electronic devices, and/or the like. The touch panel may further include a functional film(s) which may be one or more of: an index-matching film, an antiglare film, an anti-fingerprint film, and anti-microbial film, a scratch resistant film, and/or an antireflective (AR) film.
    Type: Application
    Filed: August 23, 2018
    Publication date: December 20, 2018
    Inventors: Willem DEN BOER, Alexey KRASNOV, Jason BLUSH, Eric W. AKKASHIAN
  • Patent number: 10133108
    Abstract: Certain example embodiments relate to vending machines with large area transparent touch electrode (LATTE) technology, and/or associated methods. By using the low-E Ag-based coatings described herein, it is possible to create new vending machine user interfaces that are more interesting and interactive than conventional interfaces. Touch-based user interfaces may be useful in vending, attract, and game-playing modes into which example vending machines may be placed and under which they may be operated.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: November 20, 2018
    Assignee: Guardian Glass, LLC
    Inventors: Eric W. Akkashian, Jason Blush, Alexander Watanabe, Jian-gang Weng
  • Patent number: 10078409
    Abstract: Certain example embodiments relate to capacitive touch panels. First and second glass substrates are substantially parallel and spaced apart from one another. At least one multi-layer transparent conductive coating (TCC) is patterned into electrodes and located between the first and second substrates. The TCC(s) include(s) at least one conductive layer including silver, a dielectric layer including zinc oxide under and directly contacting the conductive layer including silver, and a dielectric layer(s) including tin oxide or silicon nitride over the conductive layer including silver. Processing circuitry electrically connects to the electrodes and measures an aspect of the electrodes' capacitance. A laminate material is located between the first and second glass substrates. The TCC(s), when blanket deposited, may have a visible transmission of at least 88%, a sheet resistances of no more than 10 ohms per square, and a haze of no more than 0.5%. Mutual and self-capacitance designs are disclosed.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: September 18, 2018
    Assignee: Guardian Glass, LLC
    Inventors: Vijayen S. Veerasamy, Jason Blush, Eric W. Akkashian, Willem Den Boer, Alexey Krasnov
  • Patent number: 10073576
    Abstract: A multi-layer conductive coating is substantially transparent to visible light, contains at least one conductive layer comprising silver that is sandwiched between at least a pair of dielectric layers, and may be used as an electrode and/or conductive trace in a capacitive touch panel. The multi-layer conductive coating may contain a dielectric layer of or including zirconium oxide (e.g., ZrO2) and/or silicon nitride, and may be used in applications such as capacitive touch panels for controlling showers, appliances, vending machines, electronics, electronic devices, and/or the like. The touch panel may further include a functional film(s) which may be one or more of: an index-matching film, an antiglare film, an anti-fingerprint film, and anti-microbial film, a scratch resistant film, and/or an antireflective (AR) film.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: September 11, 2018
    Assignee: Guardian Glass, LLC
    Inventors: Willem Den Boer, Alexey Krasnov, Jason Blush, Eric W. Akkashian
  • Publication number: 20180210579
    Abstract: A multi-layer conductive coating is substantially transparent to visible light, contains at least one conductive layer comprising silver that is sandwiched between at least a pair of dielectric layers, and may be used as an electrode and/or conductive trace in a capacitive touch panel. The multi-layer conductive coating may contain a dielectric layer of or including zirconium oxide (e.g., ZrO2) and/or silicon nitride, and may be used in applications such as capacitive touch panels for controlling showers, appliances, vending machines, electronics, electronic devices, and/or the like. The touch panel may further include a functional film(s) which may be one or more of: an index-matching film, an antiglare film, an anti-fingerprint film, and anti-microbial film, a scratch resistant film, and/or an antireflective (AR) film.
    Type: Application
    Filed: March 19, 2018
    Publication date: July 26, 2018
    Inventors: Willem DEN BOER, Alexey KRASNOV, Jason BLUSH, Eric W. AKKASHIAN
  • Publication number: 20180202037
    Abstract: Certain example embodiments relate to silver nano-metal mesh inclusive electrodes, and/or methods of making the same. The techniques described herein may be used, for example, in projected capacitive touch panels, display devices, and/or the like. Purposeful de-wetting of physical vapor deposited (PVD) silver (e.g., sputter deposited silver) is used to create the mesh. The properties of the mesh can be controlled through heat treatment, changes to the base layer composition (e.g., using materials with different surface energies, or adjusting surface energies), the creation of non-Ag PVD or otherwise formed islands that act as nodes for the film to attach itself to during the de-wetting process, and/or the like.
    Type: Application
    Filed: February 7, 2018
    Publication date: July 19, 2018
    Inventors: Jason BLUSH, Patricia TUCKER
  • Publication number: 20180190984
    Abstract: Certain example embodiments relate to silver nano-metal mesh inclusive electrodes, and/or methods of making the same. The techniques described herein may be used, for example, in projected capacitive touch panels, display devices, and/or the like. Purposeful de-wetting of physical vapor deposited (PVD) silver (e.g., sputter deposited silver) is used to create the mesh. The properties of the mesh can be controlled through heat treatment, changes to the base layer composition (e.g., using materials with different surface energies, or adjusting surface energies), the creation of non-Ag PVD or otherwise formed islands that act as nodes for the film to attached itself to during the de-wetting process, and/or the like.
    Type: Application
    Filed: December 27, 2017
    Publication date: July 5, 2018
    Inventors: Jason BLUSH, Patricia TUCKER
  • Publication number: 20180181237
    Abstract: Certain example embodiments relate to capacitive touch panels. First and second glass substrates are substantially parallel and spaced apart from one another. At least one multi-layer transparent conductive coating (TCC) is patterned into electrodes and located between the first and second substrates. The TCC(s) include(s) at least one conductive layer including silver, a dielectric layer including zinc oxide under and directly contacting the conductive layer including silver, and a dielectric layer(s) including tin oxide or silicon nitride over the conductive layer including silver. Processing circuitry electrically connects to the electrodes and measures an aspect of the electrodes' capacitance. A laminate material is located between the first and second glass substrates. The TCC(s), when blanket deposited, may have a visible transmission of at least 88%, a sheet resistances of no more than 10 ohms per square, and a haze of no more than 0.5%. Mutual and self-capacitance designs are disclosed.
    Type: Application
    Filed: February 26, 2018
    Publication date: June 28, 2018
    Inventors: Vijayen S. VEERASAMY, Jason BLUSH, Eric W. AKKASHIAN, Willem DEN BOER, Alexey KRASNOV
  • Publication number: 20180113537
    Abstract: A multi-layer conductive coating is substantially transparent to visible light, contains at least one conductive layer comprising silver that is sandwiched between at least a pair of dielectric layers, and may be used as an electrode and/or conductive trace in a capacitive touch panel. The multi-layer conductive coating may contain a dielectric layer of or including zirconium oxide (e.g., ZrO2) and/or silicon nitride, and may be used in applications such as capacitive touch panels for controlling showers, appliances, vending machines, electronics, electronic devices, and/or the like. The coating may have increased resistivity, and thus reduced conductivity, compared to pure silver layers of certain coatings, in order to allow the silver-based coating to be more suitable for use as touch panel electrode(s).
    Type: Application
    Filed: December 21, 2017
    Publication date: April 26, 2018
    Inventors: Alexey KRASNOV, Willem DEN BOER, Jason BLUSH, Eric W. AKKASHIAN
  • Publication number: 20180113536
    Abstract: A multi-layer conductive coating is substantially transparent to visible light, contains at least one conductive layer comprising silver that is sandwiched between at least a pair of dielectric layers, and may be used as an electrode and/or conductive trace in a capacitive touch panel. The multi-layer conductive coating may contain a dielectric layer(s), and may be used in applications such as capacitive touch panels for controlling showers, appliances, vending machines, electronics, electronic devices, and/or the like. In certain example embodiments, different electrodes of the touch panel may have different resistance, with the respective silver-based structures of various electrodes being different from one another to provide different resistance for different electrodes.
    Type: Application
    Filed: December 21, 2017
    Publication date: April 26, 2018
    Inventors: Alexey KRASNOV, Willem DEN BOER, Jason BLUSH, Eric W. AKKASHIAN
  • Patent number: 9921703
    Abstract: A multi-layer conductive coating is substantially transparent to visible light, contains at least one conductive layer comprising silver that is sandwiched between at least a pair of dielectric layers, and may be used as an electrode and/or conductive trace in a capacitive touch panel. The multi-layer conductive coating may contain a dielectric layer of or including zirconium oxide (e.g., ZrO2) and/or silicon nitride, and may be used in applications such as capacitive touch panels for controlling showers, appliances, vending machines, electronics, electronic devices, and/or the like. The touch panel may further include a functional film(s) which may be one or more of: an index-matching film, an antiglare film, an anti-fingerprint film, and anti-microbial film, a scratch resistant film, and/or an antireflective (AR) film.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: March 20, 2018
    Assignee: Guardian Glass, LLC
    Inventors: Willem Den Boer, Alexey Krasnov, Jason Blush, Eric W. Akkashian
  • Patent number: 9904431
    Abstract: Certain example embodiments relate to capacitive touch panels. First and second glass substrates are substantially parallel and spaced apart from one another. At least one multi-layer transparent conductive coating (TCC) is patterned into electrodes and located between the first and second substrates. The TCC(s) include(s) at least one conductive layer including silver, a dielectric layer including zinc oxide under and directly contacting the conductive layer including silver, and a dielectric layer(s) including tin oxide or silicon nitride over the conductive layer including silver. Processing circuitry electrically connects to the electrodes and measures an aspect of the electrodes' capacitance. A laminate material is located between the first and second glass substrates. The TCC(s), when blanket deposited, may have a visible transmission of at least 88%, a sheet resistances of no more than 10 ohms per square, and a haze of no more than 0.5%. Mutual and self-capacitance designs are disclosed.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: February 27, 2018
    Assignee: Guardian Glass, LLC
    Inventors: Vijayen S. Veerasamy, Jason Blush, Eric W. Akkashian, Willem Den Boer, Alexey Krasnov
  • Publication number: 20180022928
    Abstract: Certain example embodiments relate to coated articles supporting high-entropy nitride and/or oxide thing film inclusive coatings, and/or methods of making the same. The example high-entropy alloys systems described herein are heat stable and may be used in optical coatings. A first material system that may be used in connection with certain example embodiments includes SiAlN with one or more (and preferably two or more) of elements such as Hf, Y, Zr, Ti, Ta, and Nb. A second material system that may be used in connection with certain example embodiments includes TiO, with one or more (and preferably two or more) of elements such as Fe, Co, Ni, Sn, Zn, and N. The material systems may in some cases be high-index materials that can serve as a substitute for titanium oxide in layer stacks, in some example applications.
    Type: Application
    Filed: July 20, 2016
    Publication date: January 25, 2018
    Inventor: Jason BLUSH
  • Publication number: 20180022929
    Abstract: Certain example embodiments relate to coated articles supporting high-entropy nitride and/or oxide thing film inclusive coatings, and/or methods of making the same. The example high-entropy alloys systems described herein are heat stable and may be used in optical coatings. A first material system that may be used in connection with certain example embodiments includes SiAlN with one or more (and preferably two or more) of elements such as Hf, Y, Zr, Ti, Ta, and Nb. A second material system that may be used in connection with certain example embodiments includes TiO, with one or more (and preferably two or more) of elements such as Fe, Co, Ni, Sn, Zn, and N. The material systems may in some cases be high-index materials that can serve as a substitute for titanium oxide in layer stacks, in some example applications.
    Type: Application
    Filed: July 20, 2016
    Publication date: January 25, 2018
    Inventor: Jason BLUSH
  • Publication number: 20180011567
    Abstract: A multi-layer conductive coating is substantially transparent to visible light, contains at least one conductive layer comprising silver that is sandwiched between at least a pair of dielectric layers, and may be used as an electrode and/or conductive trace in a capacitive touch panel. The multi-layer conductive coating may contain a dielectric layer of or including zirconium oxide (e.g., ZrO2) and/or silicon nitride, and may be used in applications such as capacitive touch panels for controlling showers, appliances, vending machines, electronics, electronic devices, and/or the like. The touch panel may further include a functional film(s) which may be one or more of: an index-matching film, an antiglare film, an anti-fingerprint film, and anti-microbial film, a scratch resistant film, and/or an antireflective (AR) film.
    Type: Application
    Filed: August 16, 2017
    Publication date: January 11, 2018
    Inventors: Willem DEN BOER, Alexey KRASNOV, Jason BLUSH, Eric W. AKKASHIAN
  • Publication number: 20170329166
    Abstract: Certain example embodiments relate to vending machines with large area transparent touch electrode (LATTE) technology, and/or associated methods. By using the low-E Ag-based coatings described herein, it is possible to create new vending machine user interfaces that are more interesting and interactive than conventional interfaces. Touch-based user interfaces may be useful in vending, attract, and game-playing modes into which example vending machines may be placed and under which they may be operated.
    Type: Application
    Filed: June 30, 2017
    Publication date: November 16, 2017
    Inventors: Eric W. AKKASHIAN, Jason BLUSH, Alexander WATANABE, Jian-gang WENG
  • Publication number: 20170315637
    Abstract: Certain example embodiments relate to capacitive touch panels. First and second glass substrates are substantially parallel and spaced apart from one another. At least one multi-layer transparent conductive coating (TCC) is patterned into electrodes and located between the first and second substrates. The TCC(s) include(s) at least one conductive layer including silver, a dielectric layer including zinc oxide under and directly contacting the conductive layer including silver, and a dielectric layer(s) including tin oxide or silicon nitride over the conductive layer including silver. Processing circuitry electrically connects to the electrodes and measures an aspect of the electrodes' capacitance. A laminate material is located between the first and second glass substrates. The TCC(s), when blanket deposited, may have a visible transmission of at least 88%, a sheet resistances of no more than 10 ohms per square, and a haze of no more than 0.5%. Mutual and self-capacitance designs are disclosed.
    Type: Application
    Filed: July 12, 2017
    Publication date: November 2, 2017
    Inventors: Vijayen S. VEERASAMY, Jason BLUSH, Eric W. AKKASHIAN, Willem DEN BOER, Alexey KRASNOV
  • Patent number: 9733779
    Abstract: Certain example embodiments relate to capacitive touch panels. First and second glass substrates are substantially parallel and spaced apart from one another. At least one multi-layer transparent conductive coating (TCC) is patterned into electrodes and located between the first and second substrates. The TCC(s) include(s) at least one conductive layer including silver, a dielectric layer including zinc oxide under and directly contacting the conductive layer including silver, and a dielectric layer(s) including tin oxide or silicon nitride over the conductive layer including silver. Processing circuitry electrically connects to the electrodes and measures an aspect of the electrodes' capacitance. A laminate material is located between the first and second glass substrates. The TCC(s), when blanket deposited, may have a visible transmission of at least 88%, a sheet resistances of no more than 10 ohms per square, and a haze of no more than 0.5%. Mutual and self-capacitance designs are disclosed.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: August 15, 2017
    Assignee: Guardian Industries Corp.
    Inventors: Vijayen S. Veerasamy, Jason Blush, Eric W. Akkashian, Willem Den Boer, Alexey Krasnov
  • Publication number: 20160328053
    Abstract: Certain example embodiments relate to capacitive touch panels. First and second glass substrates are substantially parallel and spaced apart from one another. At least one multi-layer transparent conductive coating (TCC) is patterned into electrodes and located between the first and second substrates. The TCC(s) include(s) at least one conductive layer including silver, a dielectric layer including zinc oxide under and directly contacting the conductive layer including silver, and a dielectric layer(s) including tin oxide or silicon nitride over the conductive layer including silver. Processing circuitry electrically connects to the electrodes and measures an aspect of the electrodes' capacitance. A laminate material is located between the first and second glass substrates. The TCC(s), when blanket deposited, may have a visible transmission of at least 88%, a sheet resistances of no more than 10 ohms per square, and a haze of no more than 0.5%. Mutual and self-capacitance designs are disclosed.
    Type: Application
    Filed: July 21, 2016
    Publication date: November 10, 2016
    Inventors: Vijayen S. VEERASAMY, Jason BLUSH, Eric W. AKKASHIAN, Willem DEN BOER, Alexey KRASNOV