Patents by Inventor Jason Casolari

Jason Casolari has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200392470
    Abstract: Disclosed are microalgal cells having an ablated or downregulated fatty acyl-ACP thioesterase (FATA) gene, wherein the cell is modified to express a heterologous lysophosphatidic acid acyltransferase (LPAAT) comprising an amino acid sequence that has at least 80% identity to an acyltransferase encoded by SEQ ID NO: 90, 89, 92, 93 or 95 and wherein the modified microalgal cell produces an oil with an elevated ratio of saturated-unsaturated-saturated triglycerides over trisaturated triglycerides as compared to a corresponding unmodified cell. Also disclosed are microalgal oils comprising at least 60% stearate-oleate-stearate (SOS) triglycerides, less than 5% trisaturates and wherein the fatty acid profile of the oil comprises at least 50% C18:0. Related methods of producing an oil are also disclosed.
    Type: Application
    Filed: August 20, 2020
    Publication date: December 17, 2020
    Inventors: Jeffrey Leo Moseley, Jason Casolari, Xinhua Zhao, Aren Ewing, Aravind Somanchi, Scott Franklin, David Davis
  • Patent number: 10557114
    Abstract: The invention features plant acyl-ACP thioesterase genes of the FatB class and proteins encoded by these genes. The genes are useful for constructing recombinant host cells having altered fatty acid profiles. Oleaginous microalga host cells with the new genes or previously identified FatB genes are disclosed. The microalgae cells produce triglycerides with useful fatty acid profiles.
    Type: Grant
    Filed: October 8, 2017
    Date of Patent: February 11, 2020
    Assignee: CORBION BIOTECH, INC.
    Inventors: George N. Rudenko, Jason Casolari, Scott Franklin
  • Publication number: 20190345463
    Abstract: The present invention relates to beta-ketoacyl ACP synthase genes of the KASI/KASIV type and proteins encoded by these genes. The genes can be included in nucleic acid constructs, vectors or host cells. Expression of the gene products can alter the fatty acid profile of host cells. The KAS genes can be combined with a FATA or FATB thioesterase gene to create a cell that produces an increased amount of C8-C16 fatty acids. Suitable host cells include plastidic cells of plants or microalgae. Oleaginous microalga host cells with the new genes are disclosed.
    Type: Application
    Filed: April 18, 2019
    Publication date: November 14, 2019
    Inventors: David Davis, George Rudenko, Aravind Somanchi, Jason Casolari, Scott Franklin, Aren Ewing
  • Publication number: 20190194703
    Abstract: Novel plant acyl-ACP thioesterase genes of the FatB and FatA classes and proteins encoded by these genes are disclosed. The genes are useful for constructing recombinant host cells having altered fatty acid profiles. Expression of the novel and/or mutated FATB and FATA genes is demonstrated in oleaginous microalga host cells. Furthermore, a method for producing an oil elevated in one or more of C12:0, C14:0, C16:0, C18:0 and/or C18:1 fatty acids includes transforming a cell with novel and/or mutated FATB and/or FATA genes, e.g., having an N-terminal deletion. The cells produce triglycerides with altered and useful fatty acid profiles.
    Type: Application
    Filed: November 9, 2018
    Publication date: June 27, 2019
    Inventors: Jason Casolari, George N. Rudenko, Scott Franklin, Xinhua Zhao
  • Patent number: 10316299
    Abstract: The present invention relates to beta-ketoacyl ACP synthase genes of the KASI/KASIV type and proteins encoded by these genes. The genes can be included in nucleic acid constructs, vectors or host cells. Expression of the gene products can alter the fatty acid profile of host cells. The KAS genes can be combined with a FATA or FATB thioesterase gene to create a cell that produces an increased amount of C8-C16 fatty acids. Suitable host cells include plastidic cells of plants or microalgae. Oleaginous microalga host cells with the new genes are disclosed.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: June 11, 2019
    Assignee: CORBION BIOTECH, INC.
    Inventors: David Davis, George N. Rudenko, Aravind Somanchi, Jason Casolari, Scott Franklin, Aren Ewing
  • Patent number: 10125382
    Abstract: Novel plant acyl-ACP thioesterase genes of the FatB and FatA classes and proteins encoded by these genes are disclosed. The genes are useful for constructing recombinant host cells having altered fatty acid profiles. Expression of the novel and/or mutated FATB and FATA genes is demonstrated in oleaginous microalga host cells. Furthermore, a method for producing an oil elevated in one or more of C12:0, C14:0, C16:0, C18:0 and/or C18:1 fatty acids includes transforming a cell with novel and/or mutated FATB and/or FATA genes, e.g., having an N-terminal deletion. The cells produce triglycerides with altered and useful fatty acid profiles.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: November 13, 2018
    Assignee: CORBION BIOTECH, INC.
    Inventors: Jason Casolari, George N. Rudenko, Scott Franklin, Xinhua Zhao
  • Publication number: 20180230442
    Abstract: The present invention relates to beta-ketoacyl ACP synthase genes of the KASI/KASIV type and proteins encoded by these genes. The genes can be included in nucleic acid constructs, vectors or host cells. Expression of the gene products can alter the fatty acid profile of host cells. The KAS genes can be combined with a FATA or FATB thioesterase gene to create a cell that produces an increased amount of C8-C16 fatty acids. Suitable host cells include plastidic cells of plants or microalgae. Oleaginous microalga host cells with the new genes are disclosed.
    Type: Application
    Filed: April 10, 2018
    Publication date: August 16, 2018
    Inventors: David Davis, George N. Rudenko, Aravind Somanchi, Jason Casolari, Scott Franklin, Aren Ewing
  • Publication number: 20180208953
    Abstract: The invention features plant acyl-ACP thioesterase genes of the FatB class and proteins encoded by these genes. The genes are useful for constructing recombinant host cells having altered fatty acid profiles. Oleaginous microalga host cells with the new genes or previously identified FatB genes are disclosed. The microalgae cells produce triglycerides with useful fatty acid profiles.
    Type: Application
    Filed: October 8, 2017
    Publication date: July 26, 2018
    Applicant: TerraVia Holdings, Inc.
    Inventors: George N. Rudenko, Jason Casolari, Scott Franklin
  • Publication number: 20180142218
    Abstract: Recombinant nucleic acids and vector constructs encoding acyltransferases and variant thioesterases, and the acyltransferases and variant thioesterases encoded by the nucleic acids are provided. The acyltransferases and variant thioesterases are useful in fatty acid synthesis and triacylglycerol production. Host cells that express the recombinant nucleic acids as well as methods of cultivating the host cells, methods of producing oils from the host cells are provided. The recombinant host cells and the oils produced therefrom have altered fatty acid profiles and/or triacylglycerols with altered regiospecificity.
    Type: Application
    Filed: October 4, 2017
    Publication date: May 24, 2018
    Inventors: Jeffrey Leo Moseley, Jason Casolari, Xinhua Zhao, Aren Ewing, Aravind Somanchi, Scott Franklin, David Davis
  • Patent number: 9969990
    Abstract: The present invention relates to beta-ketoacyl ACP synthase genes of the KASI/KASIV type and proteins encoded by these genes. The genes can be included in nucleic acid constructs, vectors or host cells. Expression of the gene products can alter the fatty acid profile of host cells. The KAS genes can be combined with a FATA or FATB thioesterase gene to create a cell that produces an increased amount of C8-C16 fatty acids. Suitable host cells include plastidic cells of plants or microalgae. Oleaginous microalga host cells with the new genes are disclosed.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: May 15, 2018
    Assignee: Corbion Biotech, Inc.
    Inventors: David Davis, George Rudenko, Aravind Somanchi, Jason Casolari, Scott Franklin, Aren Ewing
  • Patent number: 9783836
    Abstract: The invention features plant acyl-ACP thioesterase genes of the FatB class and proteins encoded by these genes. The genes are useful for constructing recombinant host cells having altered fatty acid profiles. Oleaginous microalga host cells with the new genes or previously identified FatB genes are disclosed. The microalgae cells produce triglycerides with useful fatty acid profiles.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: October 10, 2017
    Assignee: TERRAVIA HOLDINGS, INC.
    Inventors: George N. Rudenko, Jason Casolari, Scott Franklin
  • Publication number: 20160251685
    Abstract: The invention features plant acyl-ACP thioesterase genes of the FatB class and proteins encoded by these genes. The genes are useful for constructing recombinant host cells having altered fatty acid profiles. Oleaginous microalga host cells with the new genes or previously identified FatB genes are disclosed. The microalgae cells produce triglycerides with useful fatty acid profiles.
    Type: Application
    Filed: March 5, 2016
    Publication date: September 1, 2016
    Applicant: Solazyme, Inc.
    Inventors: George N. RUDENKO, Jason CASOLARI, Scott FRANKLIN
  • Publication number: 20160083758
    Abstract: Novel plant acyl-ACP thioesterase genes of the FatB and FatA classes and proteins encoded by these genes are disclosed. The genes are useful for constructing recombinant host cells having altered fatty acid profiles. Expression of the novel and/or mutated FATB and FATA genes is demonstrated in oleaginous microalga host cells. Furthermore, a method for producing an oil elevated in one or more of C12:0, C14:0, C16:0, C18:0 and/or C18:1 fatty acids includes transforming a cell with novel and/or mutated FATB and/or FATA genes, e.g., having an N-terminal deletion. The cells produce triglycerides with altered and useful fatty acid profiles.
    Type: Application
    Filed: September 18, 2015
    Publication date: March 24, 2016
    Applicant: Solazyme, Inc.
    Inventors: Jason CASOLARI, George N. RUDENKO, Scott FRANKLIN, Xinhua ZHAO
  • Patent number: 9290749
    Abstract: The invention features plant acyl-ACP thioesterase genes of the FatB class and proteins encoded by these genes. The genes are useful for constructing recombinant host cells having altered fatty acid profiles. Oleaginous microalga host cells with the new genes or previously identified FatB genes are disclosed. The microalgae cells produce triglycerides with useful fatty acid profiles.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 22, 2016
    Assignee: Solazyme, Inc.
    Inventors: George N. Rudenko, Jason Casolari, Scott Franklin
  • Publication number: 20160010066
    Abstract: The present invention relates to beta-ketoacyl ACP synthase genes of the KASI/KASIV type and proteins encoded by these genes. The genes can be included in nucleic acid constructs, vectors or host cells. Expression of the gene products can alter the fatty acid profile of host cells. The KAS genes can be combined with a FATA or FATB thioesterase gene to create a cell that produces an increased amount of C8-C16 fatty acids. Suitable host cells include plastidic cells of plants or microalgae. Oleaginous microalga host cells with the new genes are disclosed.
    Type: Application
    Filed: July 10, 2015
    Publication date: January 14, 2016
    Inventors: David Davis, George Rudenko, Aravind Somanchi, Jason Casolari, Scott Franklin, Aren Ewing
  • Publication number: 20140288320
    Abstract: The invention features plant acyl-ACP thioesterase genes of the FatB class and proteins encoded by these genes. The genes are useful for constructing recombinant host cells having altered fatty acid profiles. Oleaginous microalga host cells with the new genes or previously identified FatB genes are disclosed. The microalgae cells produce triglycerides with useful fatty acid profiles.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 25, 2014
    Applicant: Solazyme, Inc.
    Inventors: George N. Rudenko, Jason Casolari, Scott Franklin
  • Publication number: 20140275586
    Abstract: The invention features plant acyl-ACP thioesterase genes of the FatB class and proteins encoded by these genes. The genes are useful for constructing recombinant host cells having altered fatty acid profiles. Oleaginous microalga host cells with the new genes or previously identified FatB genes are disclosed. The microalgae cells produce triglycerides with useful fatty acid profiles.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: George N. Rudenko, Jason Casolari, Scott Franklin