Patents by Inventor Jason Clay Lail

Jason Clay Lail has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240126032
    Abstract: Embodiments of the disclosure relate to an optical fiber cable. The optical fiber cable includes a cable jacket having an inner surface and an outer surface in which the inner surface defines a central bore along a longitudinal axis of the optical fiber cable and the outer surface defines the outermost extent of the cable. The optical fiber cable also includes at least one access feature disposed in the cable jacket between the inner surface and the outer surface. Further included are a first plurality of optical fiber bundles. Each optical fiber bundle includes a second plurality of optical fiber ribbons that has a third plurality of optical fibers arranged in a planar configuration. The optical fiber cable bends uniformly in all directions transverse to the longitudinal axis of the optical fiber cable.
    Type: Application
    Filed: December 22, 2023
    Publication date: April 18, 2024
    Inventors: Jessica Ruth Abercrombie, Kevin Nicholas Ball, Xiaole Cheng, Jason Clay Lail, Rebecca Elizabeth Sistare, Ellen Anderson Stupka
  • Publication number: 20240061199
    Abstract: An optical communication cable includes a cable jacket formed from a first material, a plurality of core elements located within the cable jacket, and an armor layer surrounding the plurality of core elements within the cable jacket, wherein the armor layer is a multi-piece layer having a first armor segment extending a portion of the distance around the plurality of core elements and a second armor segment extending a portion of the distance around the plurality of core elements, wherein a first lateral edge of the first armor segment is adjacent a first lateral edge of the second armor segment and a second lateral edge of the first armor segment is adjacent a second lateral edge of the second armor segment such that the combination of the first armor segment and the second armor segment completely surround the plurality of core elements.
    Type: Application
    Filed: November 3, 2023
    Publication date: February 22, 2024
    Inventors: Bradley Jerome Blazer, Michael John Gimblet, Julian Latelle Greenwood, III, Jason Clay Lail, Warren Welborn McAlpine, Eric John Mozdy
  • Patent number: 11874516
    Abstract: Embodiments of the disclosure relate to an optical fiber cable. The optical fiber cable includes a cable jacket having an inner surface and an outer surface in which the inner surface defines a central bore along a longitudinal axis of the optical fiber cable and the outer surface defines the outermost extent of the cable. The optical fiber cable also includes at least one access feature disposed in the cable jacket between the inner surface and the outer surface. Further included are a first plurality of optical fiber bundles. Each optical fiber bundle includes a second plurality of optical fiber ribbons that has a third plurality of optical fibers arranged in a planar configuration. The optical fiber cable bends uniformly in all directions transverse to the longitudinal axis of the optical fiber cable.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: January 16, 2024
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventors: Jessica Ruth Abercrombie, Kevin Nicholas Ball, Xiaole Cheng, Jason Clay Lail, Rebecca Elizabeth Sistare, Ellen Anderson Stupka
  • Publication number: 20240012218
    Abstract: An optical fiber drop cable including a cable jacket having an outer surface defining the outermost surface of the optical fiber drop cable. The optical fiber drop cable also includes a subunit, a first strength element, and a second strength element. The first strength element, the second strength element, and the subunit are embedded in the cable jacket, and the first strength element, the second strength element, and the subunit are arranged substantially parallel to each other on a first plane. The subunit includes a buffer tube having an inner surface and an outer surface, at least one optical fiber, and a plurality of strengthening yarns. The plurality of strengthening yarns are disposed between the inner surface of the buffer tube and the at least one optical fiber, and the outer surface of the buffer tube is at least partially in contact with the cable jacket.
    Type: Application
    Filed: September 20, 2023
    Publication date: January 11, 2024
    Inventors: George Cornelius Abernathy, Corey Scott Keisler, Jason Clay Lail
  • Patent number: 11822139
    Abstract: An optical communication cable includes a cable jacket formed from a first material, a plurality of core elements located within the cable jacket, and an armor layer surrounding the plurality of core elements within the cable jacket, wherein the armor layer is a multi-piece layer having a first armor segment extending a portion of the distance around the plurality of core elements and a second armor segment extending a portion of the distance around the plurality of core elements, wherein a first lateral edge of the first armor segment is adjacent a first lateral edge of the second armor segment and a second lateral edge of the first armor segment is adjacent a second lateral edge of the second armor segment such that the combination of the first armor segment and the second armor segment completely surround the plurality of core elements.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: November 21, 2023
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Bradley Jerome Blazer, Michael John Gimblet, Julian Latelle Greenwood, III, Jason Clay Lail, Warren Welborn McAlpine, Eric John Mozdy
  • Patent number: 11789228
    Abstract: An optical fiber drop cable including a cable jacket having an outer surface defining the outermost surface of the optical fiber drop cable. The optical fiber drop cable also includes a subunit, a first strength element, and a second strength element. The first strength element, the second strength element, and the subunit are embedded in the cable jacket, and the first strength element, the second strength element, and the subunit are arranged substantially parallel to each other on a first plane. The subunit includes a buffer tube having an inner surface and an outer surface, at least one optical fiber, and a plurality of strengthening yarns. The plurality of strengthening yarns are disposed between the inner surface of the buffer tube and the at least one optical fiber, and the outer surface of the buffer tube is at least partially in contact with the cable jacket.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: October 17, 2023
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventors: George Cornelius Abernathy, Corey Scott Keisler, Jason Clay Lail
  • Patent number: 11698499
    Abstract: An optical fiber drop cable. The optical fiber drop cable includes at least one optical fiber and at least one inner tensile element wound around the at least one optical fiber having a laylength of at least 200 mm. The optical fiber drop cable also includes an interior jacket disposed around the at least one inner tensile element and an exterior jacket having an inner surface and an outer surface. The optical fiber drop cable further includes at least one outer tensile element disposed between the interior jacket and the outer surface of the exterior jacket. Each of the at least one outer tensile element has a laylength of at least 1 m. The exterior jacket includes at least one polyolefin, at least one thermoplastic elastomer, and at least one high aspect ratio inorganic filler. The exterior jacket has an averaged coefficient of thermal expansion of no more than 120 (10?6) m/mK.
    Type: Grant
    Filed: December 2, 2021
    Date of Patent: July 11, 2023
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventors: Xiaole Cheng, Jason Clay Lail
  • Publication number: 20220291467
    Abstract: An optical communication cable includes a cable jacket formed from a first material, a plurality of core elements located within the cable jacket, and an armor layer surrounding the plurality of core elements within the cable jacket, wherein the armor layer is a multi-piece layer having a first armor segment extending a portion of the distance around the plurality of core elements and a second armor segment extending a portion of the distance around the plurality of core elements, wherein a first lateral edge of the first armor segment is adjacent a first lateral edge of the second armor segment and a second lateral edge of the first armor segment is adjacent a second lateral edge of the second armor segment such that the combination of the first armor segment and the second armor segment completely surround the plurality of core elements.
    Type: Application
    Filed: May 27, 2022
    Publication date: September 15, 2022
    Inventors: Bradley Jerome Blazer, Michael John Gimblet, Julian Latelle Greenwood, III, Jason Clay Lail, Warren Welborn McAlpine, Eric John Mozdy
  • Patent number: 11435539
    Abstract: A sensing cable for protection against rodent damage includes an optical component comprising at least one optical fiber, a plurality of armor components embedded in the jacket, and a strength member embedded in the cable jacket, wherein when viewed in cross-section, each component of the plurality of armor components and the strength member surround the optical component with a gap formed between each component of the plurality of armor components and the optical transmission component and the strength member.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: September 6, 2022
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventors: George Cornelius Abernathy, Michael John Gimblet, Corey Scott Keisler, Jason Clay Lail, James Arthur Register, III
  • Patent number: 11353669
    Abstract: An optical communication cable includes a cable jacket formed from a first material, a plurality of core elements located within the cable jacket, and an armor layer surrounding the plurality of core elements within the cable jacket, wherein the armor layer is a multi-piece layer having a first armor segment extending a portion of the distance around the plurality of core elements and a second armor segment extending a portion of the distance around the plurality of core elements, wherein a first lateral edge of the first armor segment is adjacent a first lateral edge of the second armor segment and a second lateral edge of the first armor segment is adjacent a second lateral edge of the second armor segment such that the combination of the first armor segment and the second armor segment completely surround the plurality of core elements.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: June 7, 2022
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Bradley Jerome Blazer, Michael John Gimblet, Julian Latelle Greenwood, III, Jason Clay Lail, Warren Welborn McAlpine, Eric John Mozdy
  • Publication number: 20220091353
    Abstract: An optical fiber drop cable. The optical fiber drop cable includes at least one optical fiber and at least one inner tensile element wound around the at least one optical fiber having a laylength of at least 200 mm. The optical fiber drop cable also includes an interior jacket disposed around the at least one inner tensile element and an exterior jacket having an inner surface and an outer surface. The optical fiber drop cable further includes at least one outer tensile element disposed between the interior jacket and the outer surface of the exterior jacket. Each of the at least one outer tensile element has a laylength of at least 1 m. The exterior jacket includes at least one polyolefin, at least one thermoplastic elastomer, and at least one high aspect ratio inorganic filler. The exterior jacket has an averaged coefficient of thermal expansion of no more than 120 (10?6) m/mK.
    Type: Application
    Filed: December 2, 2021
    Publication date: March 24, 2022
    Inventors: Xiaole Cheng, Jason Clay Lail
  • Publication number: 20220057593
    Abstract: An optical fiber drop cable including a cable jacket having an outer surface defining the outermost surface of the optical fiber drop cable. The optical fiber drop cable also includes a subunit, a first strength element, and a second strength element. The first strength element, the second strength element, and the subunit are embedded in the cable jacket, and the first strength element, the second strength element, and the subunit are arranged substantially parallel to each other on a first plane. The subunit includes a buffer tube having an inner surface and an outer surface, at least one optical fiber, and a plurality of strengthening yarns. The plurality of strengthening yarns are disposed between the inner surface of the buffer tube and the at least one optical fiber, and the outer surface of the buffer tube is at least partially in contact with the cable jacket.
    Type: Application
    Filed: November 2, 2021
    Publication date: February 24, 2022
    Inventors: George Cornelius Abernathy, Corey Scott Keisler, Jason Clay Lail
  • Patent number: 11204473
    Abstract: An optical fiber drop cable. The optical fiber drop cable includes at least one optical fiber and at least one inner tensile element wound around the at least one optical fiber having a laylength of at least 200 mm. The optical fiber drop cable also includes an interior jacket disposed around the at least one inner tensile element and an exterior jacket having an inner surface and an outer surface. The optical fiber drop cable further includes at least one outer tensile element disposed between the interior jacket and the outer surface of the exterior jacket. Each of the at least one outer tensile element has a laylength of at least 1 m. The exterior jacket includes at least one polyolefin, at least one thermoplastic elastomer, and at least one high aspect ratio inorganic filler. The exterior jacket has an averaged coefficient of thermal expansion of no more than 120(10?6) m/mK.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: December 21, 2021
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventors: Xiaole Cheng, Jason Clay Lail
  • Patent number: 11187862
    Abstract: A fiber optic cable includes a tube, a stack of fiber optic ribbons twisting along a lengthwise axis through the tube, a support, and water-blocking tape positioned at least partially around the stack, between the stack and the tube. The support and water-blocking tape provide an elevated portion of the water-blocking tape that is raised. As the stack twists along the lengthwise axis of the tube, corners of the stack interface with the elevated portion to provide intermittent frictional coupling between the stack and the tube.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: November 30, 2021
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: James Lee Baucom, Jason Clay Lail, William Welch McCollough, David Alan Seddon
  • Publication number: 20210247579
    Abstract: Embodiments of the disclosure relate to an optical fiber cable. The optical fiber cable includes a cable jacket having an inner surface and an outer surface in which the inner surface defines a central bore along a longitudinal axis of the optical fiber cable and the outer surface defines the outermost extent of the cable. The optical fiber cable also includes at least one access feature disposed in the cable jacket between the inner surface and the outer surface. Further included are a first plurality of optical fiber bundles. Each optical fiber bundle includes a second plurality of optical fiber ribbons that has a third plurality of optical fibers arranged in a planar configuration. The optical fiber cable bends uniformly in all directions transverse to the longitudinal axis of the optical fiber cable.
    Type: Application
    Filed: April 29, 2021
    Publication date: August 12, 2021
    Inventors: Jessica Ruth Abercrombie, Kevin Nicholas Ball, Xiaole Cheng, Jason Clay Lail, Rebecca Elizabeth Sistare, Ellen Anderson Stupka
  • Publication number: 20200386964
    Abstract: An optical fiber drop cable. The optical fiber drop cable includes at least one optical fiber and at least one inner tensile element wound around the at least one optical fiber having a laylength of at least 200 mm. The optical fiber drop cable also includes an interior jacket disposed around the at least one inner tensile element and an exterior jacket having an inner surface and an outer surface. The optical fiber drop cable further includes at least one outer tensile element disposed between the interior jacket and the outer surface of the exterior jacket. Each of the at least one outer tensile element has a laylength of at least 1 m. The exterior jacket includes at least one polyolefin, at least one thermoplastic elastomer, and at least one high aspect ratio inorganic filler. The exterior jacket has an averaged coefficient of thermal expansion of no more than 120(10?6) m/mK.
    Type: Application
    Filed: June 3, 2020
    Publication date: December 10, 2020
    Inventors: Xiaole Cheng, Jason Clay Lail
  • Publication number: 20200285010
    Abstract: A sensing cable for protection against rodent damage includes an optical component comprising at least one optical fiber, a plurality of armor components embedded in the jacket, and a strength member embedded in the cable jacket, wherein when viewed in cross-section, each component of the plurality of armor components and the strength member surround the optical component with a gap formed between each component of the plurality of armor components and the optical transmission component and the strength member.
    Type: Application
    Filed: May 21, 2020
    Publication date: September 10, 2020
    Inventors: George Cornelius Abernathy, Michael John Gimblet, Corey Scott Keisler, Jason Clay Lail, James Arthur Register, III
  • Patent number: 10697804
    Abstract: A vibration sensing optical fiber cable is provided. The cable includes at least one optical fiber embedded in the cable jacket such that vibrations from the environment are transmitted into the cable jacket to the optical fiber. The cable is configured in a variety of ways, including through spatial arrangement of the sensing fibers, through acoustic impedance matched materials, through internal vibration reflecting structures, and/or through acoustic lens features to enhance sensitivity of the cable for vibration detection/monitoring.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: June 30, 2020
    Assignee: Corning Research & Development Corporation
    Inventors: Riley Saunders Freeland, Michael John Gimblet, Jason Clay Lail, James Arthur Register, III, David Alan Seddon
  • Patent number: 10684162
    Abstract: A vibration sensing optical fiber cable is provided. The cable includes at least one optical fiber embedded in the cable jacket such that vibrations from the environment are transmitted into the cable jacket to the optical fiber. The cable is configured in a variety of ways, including through spatial arrangement of the sensing fibers, through acoustic impedance matched materials, through internal vibration reflecting structures, and/or through acoustic lens features to enhance sensitivity of the cable for vibration detection/monitoring.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: June 16, 2020
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventors: Riley Saunders Freeland, Michael John Gimblet, Jason Clay Lail, James Arthur Register, III, David Alan Seddon
  • Patent number: 10545298
    Abstract: A traceable fiber optic cable assembly with an illumination structure and tracing optical fibers for carrying light received from a light launch device is disclosed herein. The traceable fiber optic cable assembly and light launch device provide easy tracing of the traceable fiber optic cable assembly using fiber optic tracing signals. Further, the launch connector is easily attached to and removed from the fiber optic connector with repeatable and reliable alignment of optic fibers, even when the fiber optic connector is mechanically and/or optically engaged with a network component. The fiber optic connectors are configured to efficiently illuminate an exterior of the connector for effective visibility for a user to quickly locate the fiber optic connector.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: January 28, 2020
    Assignee: Corning Research & Development Corporation
    Inventors: Anthony Sebastian Bauco, Douglas Llewellyn Butler, Ashley Wesley Jones, Jason Clay Lail, Eric Stephan ten Have