Patents by Inventor Jason N. Jarboe

Jason N. Jarboe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11821794
    Abstract: Devices and corresponding methods can be provided to monitor or measure temperature of a target or to control a process. Targets can have low, unknown, or variable emissivity. Devices and corresponding methods can be used to measure temperatures of thin film, partially transparent, or opaque targets, as well as targets not filling a sensor's field of view. Temperature measurements can be made independent of emissivity of a target surface by, for example, inserting a target between a thermopile sensor and a background surface maintained at substantially the same temperature as the thermopile sensor. In embodiment devices and methods, a sensor temperature can be controlled to match a target temperature by minimizing or zeroing a net heat flux at the sensor, as derived from a sensor output signal. Alternatively, a target temperature can be controlled to minimize the heat flux.
    Type: Grant
    Filed: February 16, 2021
    Date of Patent: November 21, 2023
    Assignee: EXERGEN CORPORATION
    Inventors: Jason N. Jarboe, Francesco Pompei
  • Publication number: 20210181026
    Abstract: Devices and corresponding methods can be provided to monitor or measure temperature of a target or to control a process. Targets can have low, unknown, or variable emissivity. Devices and corresponding methods can be used to measure temperatures of thin film, partially transparent, or opaque targets, as well as targets not filling a sensor's field of view. Temperature measurements can be made independent of emissivity of a target surface by, for example, inserting a target between a thermopile sensor and a background surface maintained at substantially the same temperature as the thermopile sensor. In embodiment devices and methods, a sensor temperature can be controlled to match a target temperature by minimizing or zeroing a net heat flux at the sensor, as derived from a sensor output signal. Alternatively, a target temperature can be controlled to minimize the heat flux.
    Type: Application
    Filed: February 16, 2021
    Publication date: June 17, 2021
    Inventors: Jason N. Jarboe, Francesco Pompei
  • Patent number: 10955295
    Abstract: Devices and corresponding methods can be provided to monitor or measure temperature of a target or to control a process. Targets can have low, unknown, or variable emissivity. Devices and corresponding methods can be used to measure temperatures of thin film, partially transparent, or opaque targets, as well as targets not filling a sensor's field of view. Temperature measurements can be made independent of emissivity of a target surface by, for example, inserting a target between a thermopile sensor and a background surface maintained at substantially the same temperature as the thermopile sensor. In embodiment devices and methods, a sensor temperature can be controlled to match a target temperature by minimizing or zeroing a net heat flux at the sensor, as derived from a sensor output signal. Alternatively, a target temperature can be controlled to minimize the heat flux.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: March 23, 2021
    Assignee: EXERGEN CORPORATION
    Inventors: Jason N. Jarboe, Francesco Pompei
  • Patent number: 10704963
    Abstract: Devices and corresponding methods can be provided to measure temperature and/or emissivity of a target. Emissivity of the target need not be known or assumed, and any temperature difference between a sensor and the target need not be zeroed or minimized. No particular bandpass filter is required. Devices can include one or two sensors viewing the same target as the target views different respective viewed temperatures. The respective viewed temperatures can be sensor temperatures, and a single sensor can be set to each of the respective viewed temperatures at different times. An analyzer can determine the temperature and/or emissivity of the target based on the respective viewed temperatures and on plural net heat fluxes detected by the sensors and corresponding to the respective viewed temperatures.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: July 7, 2020
    Assignee: EXERGEN CORPORATION
    Inventor: Jason N. Jarboe
  • Patent number: 10520366
    Abstract: A user obtains an individual's body temperature data and transmits the data to a medical monitor (e.g., a medical device) for display. Additional data includes a timestamp and location of the body temperature data. Once the data is transmitted, a user may view the medical monitor for a temperature reading. For example, a doctor may take a patient's temperature and the temperature reading is displayed on a medical monitor. The body temperature data of each patient is detected using a preferred temperature detector, such as a temporal artery thermometer using an arterial heat balance approach. After collecting an individual's body temperature data, the body temperature data can be transferred to a processor. By sending body temperature data for many individuals for a geographic region, the processor can identify a pattern (e.g., a pandemic) in the body temperature data.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: December 31, 2019
    Assignee: Exergen Corporation
    Inventors: Francesco Pompei, Janette H. Lee, Jason N. Jarboe
  • Publication number: 20190003897
    Abstract: Devices and corresponding methods can be provided to measure temperature and/or emissivity of a target. Emissivity of the target need not be known or assumed, and any temperature difference between a sensor and the target need not be zeroed or minimized. No particular bandpass filter is required. Devices can include one or two sensors viewing the same target as the target views different respective viewed temperatures. The respective viewed temperatures can be sensor temperatures, and a single sensor can be set to each of the respective viewed temperatures at different times. An analyzer can determine the temperature and/or emissivity of the target based on the respective viewed temperatures and on plural net heat fluxes detected by the sensors and corresponding to the respective viewed temperatures.
    Type: Application
    Filed: August 20, 2018
    Publication date: January 3, 2019
    Inventor: Jason N. Jarboe
  • Publication number: 20180252587
    Abstract: Devices and corresponding methods can be provided to monitor or measure temperature of a target or to control a process. Targets can have low, unknown, or variable emissivity. Devices and corresponding methods can be used to measure temperatures of thin film, partially transparent, or opaque targets, as well as targets not filling a sensor's field of view. Temperature measurements can be made independent of emissivity of a target surface by, for example, inserting a target between a thermopile sensor and a background surface maintained at substantially the same temperature as the thermopile sensor. In embodiment devices and methods, a sensor temperature can be controlled to match a target temperature by minimizing or zeroing a net heat flux at the sensor, as derived from a sensor output signal. Alternatively, a target temperature can be controlled to minimize the heat flux.
    Type: Application
    Filed: May 3, 2018
    Publication date: September 6, 2018
    Inventors: Jason N. Jarboe, Francesco Pompei
  • Patent number: 10054495
    Abstract: Devices and corresponding methods can be provided to measure temperature and/or emissivity of a target. Emissivity of the target need not be known or assumed, and any temperature difference between a sensor and the target need not be zeroed or minimized. No particular bandpass filter is required. Devices can include one or two sensors viewing the same target as the target views different respective viewed temperatures. The respective viewed temperatures can be sensor temperatures, and a single sensor can be set to each of the respective viewed temperatures at different times. An analyzer can determine the temperature and/or emissivity of the target based on the respective viewed temperatures and on plural net heat fluxes detected by the sensors and corresponding to the respective viewed temperatures.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: August 21, 2018
    Assignee: Exergen Corporation
    Inventor: Jason N. Jarboe
  • Patent number: 9976908
    Abstract: Devices and corresponding methods can be provided to monitor or measure temperature of a target or to control a process. Targets can have low, unknown, or variable emissivity. Devices and corresponding methods can be used to measure temperatures of thin film, partially transparent, or opaque targets, as well as targets not filling a sensor's field of view. Temperature measurements can be made independent of emissivity of a target surface by, for example, inserting a target between a thermopile sensor and a background surface maintained at substantially the same temperature as the thermopile sensor. In embodiment devices and methods, a sensor temperature can be controlled to match a target temperature by minimizing or zeroing a net heat flux at the sensor, as derived from a sensor output signal. Alternatively, a target temperature can be controlled to minimize the heat flux.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: May 22, 2018
    Assignee: Exergen Corporation
    Inventors: Jason N. Jarboe, Francesco Pompei
  • Patent number: 9927305
    Abstract: The present invention relates to more accurate indication of fever. Temperature data from a large population of individuals are obtained and the temperature data are processed to determine a threshold, at a fever bump, above a normal range of distribution. The fever threshold, along with an individual's temperature, is used to indicate if the individual has a fever. Further, circadian information may be utilized to adjust the temperature data for an individual or the population of individuals.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: March 27, 2018
    Assignee: Exergen Corporation
    Inventors: Francesco Pompei, Janette H. Lee, Jason N. Jarboe
  • Publication number: 20180058939
    Abstract: A user obtains an individual's body temperature data and transmits the data to a medical monitor (e.g., a medical device) for display. Additional data includes a timestamp and location of the body temperature data. Once the data is transmitted, a user may view the medical monitor for a temperature reading. For example, a doctor may take a patient's temperature and the temperature reading is displayed on a medical monitor. The body temperature data of each patient is detected using a preferred temperature detector, such as a temporal artery thermometer using an arterial heat balance approach. After collecting an individual's body temperature data, the body temperature data can be transferred to a processor. By sending body temperature data for many individuals for a geographic region, the processor can identify a pattern (e.g., a pandemic) in the body temperature data.
    Type: Application
    Filed: November 3, 2017
    Publication date: March 1, 2018
    Inventors: Francesco Pompei, Janette H. Lee, Jason N. Jarboe
  • Publication number: 20170030781
    Abstract: The present invention relates to more accurate indication of fever. Temperature data from a large population of individuals are obtained and the temperature data are processed to determine a threshold, at a fever bump, above a normal range of distribution. The fever threshold, along with an individual's temperature, is used to indicate if the individual has a fever. Further, circadian information may be utilized to adjust the temperature data for an individual or the population of individuals.
    Type: Application
    Filed: October 13, 2016
    Publication date: February 2, 2017
    Inventors: FRANCESCO POMPEI, Janette H. Lee, Jason N. Jarboe
  • Patent number: 9470584
    Abstract: The present invention relates to more accurate indication of fever. Temperature data from a large population of individuals are obtained and the temperature data are processed to determine a threshold, at a fever bump, above a normal range of distribution. The fever threshold, along with an individual's temperature, is used to indicate if the individual has a fever. Further, circadian information may be utilized to adjust the temperature data for an individual or the population of individuals.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: October 18, 2016
    Assignee: Exergen Corporation
    Inventors: Francesco Pompei, Janette H. Lee, Jason N. Jarboe
  • Publication number: 20150017592
    Abstract: Devices and corresponding methods can be provided to monitor or measure temperature of a target or to control a process. Targets can have low, unknown, or variable emissivity. Devices and corresponding methods can be used to measure temperatures of thin film, partially transparent, or opaque targets, as well as targets not filling a sensor's field of view. Temperature measurements can be made independent of emissivity of a target surface by, for example, inserting a target between a thermopile sensor and a background surface maintained at substantially the same temperature as the thermopile sensor. In embodiment devices and methods, a sensor temperature can be controlled to match a target temperature by minimizing or zeroing a net heat flux at the sensor, as derived from a sensor output signal. Alternatively, a target temperature can be controlled to minimize the heat flux.
    Type: Application
    Filed: March 10, 2014
    Publication date: January 15, 2015
    Applicant: Exergen Corporation
    Inventors: Jason N. Jarboe, Francesco Pompei
  • Publication number: 20150010038
    Abstract: Devices and corresponding methods can be provided to measure temperature and/or emissivity of a target. Emissivity of the target need not be known or assumed, and any temperature difference between a sensor and the target need not be zeroed or minimized. No particular bandpass filter is required. Devices can include one or two sensors viewing the same target as the target views different respective viewed temperatures. The respective viewed temperatures can be sensor temperatures, and a single sensor can be set to each of the respective viewed temperatures at different times. An analyzer can determine the temperature and/or emissivity of the target based on the respective viewed temperatures and on plural net heat fluxes detected by the sensors and corresponding to the respective viewed temperatures.
    Type: Application
    Filed: February 26, 2014
    Publication date: January 8, 2015
    Applicant: Exergen Corporation
    Inventor: Jason N. Jarboe
  • Publication number: 20140243700
    Abstract: An identification input device and a temperature detector that detects body temperature data. The identification input device may be an optical touch pen. The infrared touch pen may be affixed to the temperature detector using a hook and connector or a snap fit connector. In use, the temperature detector computes body temperature data and the identification input device determines an identifier. The identifier is unique to a user. After obtaining the body temperature data and identifier, a transmitter may transmit body temperature data and the identifier over a wireless communications path to a processing unit. By transmitting data over a wireless communications path, an individual's data or a large group of data may be analyzed and viewed via a display unit.
    Type: Application
    Filed: December 23, 2013
    Publication date: August 28, 2014
    Applicant: EXERGEN CORPORATION
    Inventors: Francesco Pompei, Janette H. Lee, Jason N. Jarboe
  • Publication number: 20140149065
    Abstract: The present invention relates to more accurate indication of fever. Temperature data from a large population of individuals are obtained and the temperature data are processed to determine a threshold, at a fever bump, above a normal range of distribution. The fever threshold, along with an individual's temperature, is used to indicate if the individual has a fever. Further, circadian information may be utilized to adjust the temperature data for an individual or the population of individuals.
    Type: Application
    Filed: November 26, 2012
    Publication date: May 29, 2014
    Applicant: EXERGEN CORPORATION
    Inventors: Francesco Pompei, Janette H. Lee, Jason N. Jarboe
  • Publication number: 20140046620
    Abstract: A user obtains an individual's body temperature data and transmits the data to a medical monitor (e.g., a medical device) for display. Additional data includes a timestamp and location of the body temperature data. Once the data is transmitted, a user may view the medical monitor for a temperature reading. For example, a doctor may take a patient's temperature and the temperature reading is displayed on a medical monitor. The body temperature data of each patient is detected using a preferred temperature detector, such as a temporal artery thermometer using an arterial heat balance approach. After collecting an individual's body temperature data, the body temperature data can be transferred to a processor. By sending body temperature data for many individuals for a geographic region, the processor can identify a pattern (e.g., a pandemic) in the body temperature data.
    Type: Application
    Filed: October 18, 2013
    Publication date: February 13, 2014
    Applicant: Exergen Corporation
    Inventors: Francesco Pompei, Janette H. Lee, Jason N. Jarboe
  • Patent number: 8577642
    Abstract: A user obtains an individual's body temperature data and transmits the data to a medical monitor (e.g., a medical device) for display. Additional data includes a timestamp and location of the body temperature data. Once the data is transmitted, a user may view the medical monitor for a temperature reading. For example, a doctor may take a patient's temperature and the temperature reading is displayed on a medical monitor. The body temperature data of each patient is detected using a preferred temperature detector, such as a temporal artery thermometer using an arterial heat balance approach. After collecting an individual's body temperature data, the body temperature data can be transferred to a processor. By sending body temperature data for many individuals for a geographic region, the processor can identify a pattern (e.g., a pandemic) in the body temperature data.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: November 5, 2013
    Assignee: Exergen Corporation
    Inventors: Francesco Pompei, Janette H. Lee, Jason N. Jarboe
  • Publication number: 20120197585
    Abstract: A user obtains an individual's body temperature data and transmits the data to a medical monitor (e.g., a medical device) for display. Additional data includes a timestamp and location of the body temperature data. Once the data is transmitted, a user may view the medical monitor for a temperature reading. For example, a doctor may take a patient's temperature and the temperature reading is displayed on a medical monitor. The body temperature data of each patient is detected using a preferred temperature detector, such as a temporal artery thermometer using an arterial heat balance approach. After collecting an individual's body temperature data, the body temperature data can be transferred to a processor. By sending body temperature data for many individuals for a geographic region, the processor can identify a pattern (e.g., a pandemic) in the body temperature data.
    Type: Application
    Filed: April 12, 2012
    Publication date: August 2, 2012
    Applicant: Exergen Corporation
    Inventors: Francesco Pompei, Janette H. Lee, Jason N. Jarboe