Patents by Inventor Jason S. Lewis

Jason S. Lewis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240058482
    Abstract: This invention concerns various methods of using labeled HSP90 inhibitors to improve treatment of cancer patients with HSP90 inhibitors, including ex vivo and in vivo methods for determining whether a tumor will likely respond to therapy with an HSP90 inhibitor.
    Type: Application
    Filed: January 31, 2023
    Publication date: February 22, 2024
    Inventors: Gabriela Chiosis, Nagavarakishore Pillarsetty, Jason S. Lewis, Steven M. Larson, Tony Taldone, Mary L. Alpaugh, Erica M. Gomes-DaGama
  • Publication number: 20230372551
    Abstract: The present disclosure provides compounds, complexes, compositions, and methods for the detection of cancer. Specifically, the compounds, complexes, compositions of the present technology include pH (low) insertion peptides. Also disclosed herein are methods of using the complexes and compositions of the present technology in diagnostic imaging to detect cancer in a subject.
    Type: Application
    Filed: September 21, 2021
    Publication date: November 23, 2023
    Applicants: MEMORIAL SLOAN-KETTERING CANCER CENTER, MEMORIAL HOSPITAL FOR CANCER AND ALLIED DISEASES, SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH, UNIVERSITY OF RHODE ISLAND BOARD OF TRUSTEES, PHLIP, INC.
    Inventors: Jason S. LEWIS, Yana K. RESHETNYAK, Lukas M. CARTER, David BAUER
  • Publication number: 20230241259
    Abstract: The present technology is directed to compounds useful in the imaging of peripheral neurons.
    Type: Application
    Filed: June 8, 2021
    Publication date: August 3, 2023
    Applicant: MEMORIAL SLOAN KETTERING CANCER CENTER
    Inventors: Junior Gonzales, Javier Hernández-Gil, Jason S. Lewis, Thomas Reiner
  • Publication number: 20230158180
    Abstract: The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer. The nanoparticle has a range of diameters including between about 0.1 nm and about 100 nm, between about 0.5 nm and about 50 nm, between about 1 nm and about 25 nm, between about 1 nm and about 15 nm, or between about 1 nm and about 8 nm. The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound. The nanoparticle also exhibits high biostability and biocompatibility. To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as poly(ethylene glycol) (PEG). The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo.
    Type: Application
    Filed: July 5, 2022
    Publication date: May 25, 2023
    Inventors: Michelle S. Bradbury, Ulrich Wiesner, Oula Penate Medina, Andrew Burns, Jason S. Lewis, Steven M. Larson
  • Patent number: 11607465
    Abstract: This invention concerns various methods of using labeled HSP90 inhibitors to improve treatment of cancer patients with HSP90 inhibitors, including ex vivo and in vivo methods for determining whether a tumor will likely respond to therapy with an HSP90 inhibitor.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: March 21, 2023
    Assignee: Sloan-Kettering Institute for Cancer Research
    Inventors: Gabriela Chiosis, Naga Vara Kishore Pillarsetty, Jason S. Lewis, Steven M. Larson, Tony Taldone, Mary L. Alpaugh, Erica M. Gomes-DaGama
  • Publication number: 20220305149
    Abstract: The present disclosure provides compositions and methods for the detection and treatment of cancer. Specifically, the compositions of the present technology include novel radiohalogenated (e.g., radioiodinated) PSMA targeting agents and methods of using the same in diagnostic imaging as well as radiation therapy.
    Type: Application
    Filed: August 28, 2020
    Publication date: September 29, 2022
    Inventors: Naga Vara Kishore PILLARSETTY, Teja Muralidhar KALIDINDI, Sang-Gyu LEE, Steven M. LARSON, Jason S. LEWIS, Serge LYASHCHENKO, Eva BURNAZI
  • Publication number: 20220275017
    Abstract: Truncated triterpene saponin analogues containing a trisaccharide or tetrasaccharide ester are disclosed. Also disclosed are pharmaceutical compositions comprising truncated saponin analogues and synthetic methods of producing the truncated saponin analogues. Another aspect of the present application relates to a method for immunizing a subject, comprising administering to the subject the pharmaceutical composition comprising a minimal saponin analogue and an antigen.
    Type: Application
    Filed: March 14, 2022
    Publication date: September 1, 2022
    Inventors: David Y. GIN, Eric K. CHEA, Alberto FERNANDEZ-TEJADA, Derek S. TAN, Jason S. LEWIS, Jeffrey R. GARDNER, NagaVaraKishore PILLARSETTY
  • Patent number: 11419955
    Abstract: The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer. The nanoparticle has a range of diameters including between about 0.1 nm and about 100 nm, between about 0.5 nm and about 50 nm, between about 1 nm and about 25 nm, between about 1 nm and about 15 nm, or between about 1 nm and about 8 nm. The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound. The nanoparticle also exhibits high biostability and biocompatibility. To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as poly(ethylene glycol) (PEG). The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: August 23, 2022
    Assignees: Sloan-Kettering Institute for Cancer Research, Cornell University
    Inventors: Michelle S. Bradbury, Ulrich Wiesner, Oula Penate Medina, Andrew Burns, Jason S. Lewis, Steven M. Larson
  • Patent number: 11274116
    Abstract: Truncated triterpene saponin analogues containing a trisaccharide or tetrasaccharide ester are disclosed. Also disclosed are pharmaceutical compositions comprising truncated saponin analogues and synthetic methods of producing the truncated saponin analogues. Another aspect of the present application relates to a method for immunizing a subject, comprising administering to the subject the pharmaceutical composition comprising a minimal saponin analogue and an antigen.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: March 15, 2022
    Assignee: MEMORIAL SLOAN-KETTERING CANCER CENTER
    Inventors: David Y. Gin, Eric K. Chea, Alberto Fernandez-Tejada, Derek S. Tan, Jason S. Lewis, Jeffrey R. Gardner, NagaVarakishore Pillarsetty
  • Publication number: 20210283281
    Abstract: The present disclosure provides compounds, complexes, compositions, and methods for the detection of cancer. Specifically, the compounds, complexes, compositions of the present technology include pH (low) insertion peptides. Also disclosed herein are methods of using the complexes and compositions of the present technology in diagnostic imaging to detect cancer in a subject.
    Type: Application
    Filed: July 29, 2017
    Publication date: September 16, 2021
    Applicants: MEMORIAL SLOAN KETTERING CANCER CENTER, RHODE ISLAND COUNCIL ON POSTSECONDARY EDUCATION, PHLIP, INC.
    Inventors: Jason S. LEWIS, Dustin DEMOIN, Yana K. RESHETNYAK, Oleg A. ANDREEV, Donald M. ENGELMAN, Narissa VIOLA-VILLEGAS
  • Publication number: 20210138091
    Abstract: This invention concerns various methods of using labeled HSP90 inhibitors to improve treatment of cancer patients with HSP90 inhibitors, including ex vivo and in vivo methods for determining whether a tumor will likely respond to therapy with an HSP90 inhibitor.
    Type: Application
    Filed: July 21, 2020
    Publication date: May 13, 2021
    Inventors: Gabriela Chiosis, Naga Vara Kishore Pillarsetty, Jason S. Lewis, Steven M. Larson, Tony Taldone, Mary L. Alpaugh, Erica M. Gomes-DaGama
  • Publication number: 20210070796
    Abstract: Truncated triterpene saponin analogues containing a trisaccharide or tetrasaccharide ester are disclosed. Also disclosed are pharmaceutical compositions comprising truncated saponin analogues and synthetic methods of producing the truncated saponin analogues. Another aspect of the present application relates to a method for immunizing a subject, comprising administering to the subject the pharmaceutical composition comprising a minimal saponin analogue and an antigen.
    Type: Application
    Filed: April 20, 2020
    Publication date: March 11, 2021
    Inventors: David Y. Gin, Eric K. Chea, Alberto Fernandez-Tejada, Derek S. Tan, Jason S. Lewis, Jeffrey R. Gardner, NagaVaraKishore Pillarsetty
  • Publication number: 20200376149
    Abstract: The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer. The nanoparticle has a range of diameters including between about 0.1 nm and about 100 nm, between about 0.5 nm and about 50 nm, between about 1 nm and about 25 nm, between about 1 nm and about 15 nm, or between about 1 nm and about 8 nm. The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound. The nanoparticle also exhibits high biostability and biocompatibility. To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as poly(ethylene glycol) (PEG). The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo.
    Type: Application
    Filed: December 13, 2019
    Publication date: December 3, 2020
    Inventors: Michelle S. Bradbury, Ulrich Wiesner, Oula Penate Medina, Andrew Burns, Jason S. Lewis, Steven M. Larson
  • Patent number: 10821195
    Abstract: Described herein is a chelator for radiolabels (e.g., 89Zr) for targeted PET imaging that is an alternative to DFO. In certain embodiments, the chelator for 89Zr is the ligand, 3,4,3-(LI-1,2-HOPO) (“HOPO”), which exhibits equal or superior stability compared to DFO in chemical and biological assays across a period of several days in vivo. As shown in FIG. 1, the HOPO is an octadentate chelator that stabilizes chelation of radiolabels (e.g., 89Zr). A bifunctional ligand comprising p-SCN-Bn-HOPO is shown in FIG. 4 and FIG. 5. Such a bifunctional ligand can eliminate (e.g., 89Zr) loss from the chelate in vivo and reduce uptake in bone and non-target tissue. Therefore, the bifunctional HOPO ligand can facilitate safer and improved PET imaging with radiolabeled antibodies.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: November 3, 2020
    Assignees: Memorial Sloan Kettering Cancer Center, Research Foundation of the City University of New York
    Inventors: Jason S. Lewis, Melissa Deri, Lynn Francesconi, Shashikanth Ponnala
  • Publication number: 20200206369
    Abstract: Presented herein are methods and compositions for non-invasive imaging of TAMs with discoidal high-density lipoproteins to assess prognosis and therapy outcome. TAMs are increasingly investigated in cancer immunology, and are considered a promising target for better and tailored treatment of malignant growths. Although TAMs also have high diagnostic and prognostic value, TAM imaging still remains largely unexplored. Imaging agents/methods provided herein are of value for non-invasive in vivo evaluation of TAM burden, not only in preclinical but also in clinical settings.
    Type: Application
    Filed: December 5, 2019
    Publication date: July 2, 2020
    Applicant: Memorial Sloan Kettering Cancer Center
    Inventors: Carlos PEREZ-MEDINA, Thomas REINER, Jason S. LEWIS, Willem MULDER, Zahi FAYAD, Edward FISHER
  • Patent number: 10626137
    Abstract: Truncated triterpene saponin analogues containing a trisaccharide or tetrasaccharide ester are disclosed. Also disclosed are pharmaceutical compositions comprising truncated saponin analogues and synthetic methods of producing the truncated saponin analogues. Another aspect of the present application relates to a method for immunizing a subject, comprising administering to the subject the pharmaceutical composition comprising a minimal saponin analogue and an antigen.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: April 21, 2020
    Assignee: MEMORIAL SLOAN-KETTERING CANCER CENTER
    Inventors: David Y. Gin, Eric K. Chea, Alberto Fernandez-Tejada, Derek S. Tan, Jason S. Lewis, Jeffrey R. Gardner, NagaVaraKishore Pillarsetty
  • Patent number: 10548997
    Abstract: The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer. The nanoparticle has a range of diameters including between about 0.1 nm and about 100 nm, between about 0.5 nm and about 50 nm, between about 1 nm and about 25 nm, between about 1 nm and about 15 nm, or between about 1 nm and about 8 nm. The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound. The nanoparticle also exhibits high biostability and biocompatibility. To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as poly(ethylene glycol) (PEG). The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: February 4, 2020
    Assignees: Sloan-Kettering Institute for Cancer Research, Cornell University
    Inventors: Michelle S. Bradbury, Ulrich Wiesner, Oula Penate Medina, Hooisweng Ow, Andrew Burns, Jason S. Lewis, Steven M. Larson
  • Patent number: 10548998
    Abstract: The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer. The nanoparticle has a range of diameters including between about 0.1 nm and about 100 nm, between about 0.5 nm and about 50 nm, between about 1 nm and about 25 nm, between about 1 nm and about 15 nm, or between about 1 nm and about 8 nm. The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound. The nanoparticle also exhibits high biostability and biocompatibility. To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as poly(ethylene glycol) (PEG). The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: February 4, 2020
    Assignees: Sloan-Kettering Institute for Cancer Research, Cornell University
    Inventors: Michelle S. Bradbury, Ulrich Wiesner, Oula Penate Medina, Andrew Burns, Jason S. Lewis, Steven M. Larson
  • Patent number: 10512700
    Abstract: Disclosed are chemical entities of formula (I) wherein R1, R2 and n are defined herein, and methods of use thereof. These chemical entities are radiative emitters and are useful, e.g., as therapeutic agents for the treatment of, or as diagnostic (e.g., imaging) agents for cancers, e.g., cancers in which PARP1 is overexpressed.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: December 24, 2019
    Assignee: Memorial Sloan Kettering Cancer Center
    Inventors: Thomas Reiner, Jason S. Lewis, Wolfgang Weber, Beatriz Salinas Rodriguez, Brandon Carney, Giuseppe Carlucci
  • Publication number: 20190298864
    Abstract: Described herein is a chelator for radiolabels (e.g., 89Zr) for targeted PET imaging that is an alternative to DFO. In certain embodiments, the chelator for 89Zr is the ligand, 3,4,3-(LI-1,2-HOPO) (“HOPO”), which exhibits equal or superior stability compared to DFO in chemical and biological assays across a period of several days in vivo. As shown in FIG. 1, the HOPO is an octadentate chelator that stabilizes chelation of radiolabels (e.g., 89Zr). A bifunctional ligand comprising p-SCN-Bn-HOPO is shown in FIG. 4 and FIG. 5. Such a bifunctional ligand can eliminate (e.g., 89Zr) loss from the chelate in vivo and reduce uptake in bone and non-target tissue. Therefore, the bifunctional HOPO ligand can facilitate safer and improved PET imaging with radiolabeled antibodies.
    Type: Application
    Filed: September 9, 2016
    Publication date: October 3, 2019
    Applicants: Memorial Sloan Kettering Cancer Center, Research Foundation of the City University of New York
    Inventors: Jason S. Lewis, Melissa Deri, Lynn Francesconi, Shashikanth Ponnala