Patents by Inventor Jason W. Sickler

Jason W. Sickler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11959853
    Abstract: System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device includes multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes at least one waveguide configured to propagate excitation energy to the sample wells from a region of the integrated device configured to couple with an excitation energy source. A pixel may also include at least one element for directing the emission energy towards a sensor within the pixel. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: April 16, 2024
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Lawrence C. West, Keith G. Fife, Benjamin Cipriany, Farshid Ghasemi
  • Publication number: 20240079843
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument. The mode-locked laser can produce sub-50-ps optical pulses at a repetition rates between 200 MHz and 50 MHz, rates suitable for massively parallel data-acquisition. The optical pulses can be used to generate a reference clock signal for synchronizing data-acquisition and signal-processing electronics of the portable instrument.
    Type: Application
    Filed: November 8, 2023
    Publication date: March 7, 2024
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife, Benjamin Cipriany
  • Patent number: 11879841
    Abstract: Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An apparatus can include an assay chip that includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits emission energy; at least one element for directing the emission energy in a particular direction; and a light path along which the emission energy travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the assay chip. The instrument includes an excitation light source for exciting the sample in each sample well; a plurality of sensors corresponding the sample wells. Each sensor may detect emission energy from a sample in a respective sample well. The instrument includes at least one optical element that directs the emission energy from each sample well towards a respective sensor of the plurality of sensors.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: January 23, 2024
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Paul E. Glenn, Lawrence C. West, Benjamin Cipriany, Keith G. Fife
  • Patent number: 11848531
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument. The mode-locked laser can produce sub-50-ps optical pulses at a repetition rates between 200 MHz and 50 MHz, rates suitable for massively parallel data-acquisition. The optical pulses can be used to generate a reference clock signal for synchronizing data-acquisition and signal-processing electronics of the portable instrument.
    Type: Grant
    Filed: March 16, 2022
    Date of Patent: December 19, 2023
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife, Benjamin Cipriany
  • Publication number: 20230375475
    Abstract: System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device may include multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes a surface having a trench region recessed from a portion of the surface and an array of sample wells, disposed in the trench region. The integrated device also includes a waveguide configured to couple excitation energy to at least one sample well in the array and positioned at a first distance from a surface of the trench region and at a second distance from the surface in a region separate from the trench region. The first distance is smaller than the second distance. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device.
    Type: Application
    Filed: July 20, 2023
    Publication date: November 23, 2023
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabiri, Gerard Schmid, Keith G. Fife, James Beach, Jason W. Sickler, Lawrence C. West, Paul E. Glenn, Kyle Preston, Farshid Ghasemi, Benjamin Cipriany, Jeremy Lackey
  • Publication number: 20230280633
    Abstract: Devices and systems having a vertical waveguide array are provided having a plurality of vertical waveguides disposed on a support substrate in an array, where each vertical waveguide further includes a reflective layer positioned to reflect impinging light toward the support substrate, a core region extending from the reflective layer to the support substrate, the core region further comprising, a first contact region and a second contact region electrically isolated from one another disposed between the reflective layer and the support substrate, and a low refractive index material disposed between the first contact region and the second contact region. The first contact region and the second contact region are operable to create a voltage drop across the low refractive index material and the low refractive index material has a lower refractive index compared to the refractive indexes of the first contact region and the second contact region.
    Type: Application
    Filed: February 28, 2023
    Publication date: September 7, 2023
    Inventor: Jason W. Sickler
  • Publication number: 20230258862
    Abstract: System and methods for optical power distribution to a large numbers of sample wells within an integrated device that can analyze single molecules and perform nucleic acid sequencing are described. The integrated device may include a grating coupler configured to receive an optical beam from an optical source and optical splitters configured to divide optical power of the grating coupler to waveguides of the integrated device positioned to couple with the sample wells. Outputs of the grating coupler may vary in one or more dimensions to account for an optical intensity profile of the optical source.
    Type: Application
    Filed: April 24, 2023
    Publication date: August 17, 2023
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabir, Gerard Schmid, Jason w. Sickler, Paul E. Glenn, Lawrence C. West, Kyle Preston, Alexander Gondarenko, Benjamin Cipriany, James Beach, Keith G. Fife, Farshid Ghasemi
  • Publication number: 20230152224
    Abstract: Compact optical sources and methods for producing short and ultrashort optical pulses are described. A semiconductor laser or LED may be driven with a bipolar waveform to generate optical pulses with FWHM durations as short as approximately 85 ps having suppressed tail emission. The pulsed optical sources may be used for fluorescent lifetime analysis of biological samples and time-of-flight imaging, among other applications.
    Type: Application
    Filed: January 6, 2023
    Publication date: May 18, 2023
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Brendan Huang, Paul E. Glenn, Jonathan C. Schultz, Jose Camara
  • Patent number: 11567006
    Abstract: Compact optical sources and methods for producing short and ultrashort optical pulses are described. A semiconductor laser or LED may be driven with a bipolar waveform to generate optical pulses with FWHM durations as short as approximately 85 ps having suppressed tail emission. The pulsed optical sources may be used for fluorescent lifetime analysis of biological samples and time-of-flight imaging, among other applications.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: January 31, 2023
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Brendan Huang, Paul E. Glenn, Jonathan C. Schultz, Jose Camara
  • Publication number: 20220364996
    Abstract: Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An integrated device includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits radiation; at least one element for directing the emission radiation in a particular direction; and a light path along which the emission radiation travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the integrated device. Each sensor may detect emission radiation from a sample in a respective sample well. The instrument includes an excitation light source for exciting the sample in each sample well.
    Type: Application
    Filed: July 29, 2022
    Publication date: November 17, 2022
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyartas, Jeremy Lackey, Gerard Schmid, Benjamin Cipriany, Jack Jewell, Lawrence C. West, Michael Ferrigno, Paul E. Glenn, Anthony Bellofiore
  • Publication number: 20220349823
    Abstract: System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device may include multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes a surface having a trench region recessed from a portion of the surface and an array of sample wells, disposed in the trench region. The integrated device also includes a waveguide configured to couple excitation energy to at least one sample well in the array and positioned at a first distance from a surface of the trench region and at a second distance from the surface in a region separate from the trench region. The first distance is smaller than the second distance. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device.
    Type: Application
    Filed: July 11, 2022
    Publication date: November 3, 2022
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabiri, Gerard Schmid, Keith G. Fife, James Beach, Jason W. Sickler, Lawrence C. West, Paul E. Glenn, Kyle Preston, Farshid Ghasemi, Benjamin Cipriany, Jeremy Lackey
  • Publication number: 20220334450
    Abstract: Devices and systems having a vertical waveguide array are provided having a plurality of vertical waveguides disposed on a support substrate in an array, where each vertical waveguide further includes a reflective region positioned to reflect impinging light toward the support substrate, a core region extending from the reflective region to the support substrate, the core region further comprising, a first contact region and a second contact region electrically isolated from one another disposed between the reflective region and the support substrate, and a light concentrator disposed between the first contact region and the second contact region. The first contact region and the second contact region are operable to create a voltage drop across the light concentrator and the light concentrator has a lower refractive index compared to the refractive indexes of the first contact region and the second contact region.
    Type: Application
    Filed: February 17, 2022
    Publication date: October 20, 2022
    Inventor: Jason W. Sickler
  • Patent number: 11466316
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument for biological or chemical analyses. The pulsed laser may produce sub-100-ps optical pulses at a repetition rate commensurate with electronic data-acquisition rates. The optical pulses may excite samples in reaction chambers of the instrument, and be used to generate a reference clock for operating signal-acquisition and signal-processing electronics of the instrument.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: October 11, 2022
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife
  • Patent number: 11428635
    Abstract: Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An integrated device includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits radiation; at least one element for directing the emission radiation in a particular direction; and a light path along which the emission radiation travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the integrated device. Each sensor may detect emission radiation from a sample in a respective sample well. The instrument includes an excitation light source for exciting the sample in each sample well.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: August 30, 2022
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Benjamin Cipriany, Jack Jewell, Lawrence C. West, Michael Ferrigno, Paul E. Glenn, Anthony Bellofiore
  • Patent number: 11422092
    Abstract: System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device may include multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes a surface having a trench region recessed from a portion of the surface and an array of sample wells, disposed in the trench region. The integrated device also includes a waveguide configured to couple excitation energy to at least one sample well in the array and positioned at a first distance from a surface of the trench region and at a second distance from the surface in a region separate from the trench region. The first distance is smaller than the second distance. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: August 23, 2022
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabiri, Gerard Schmid, Keith G. Fife, James Beach, Jason W. Sickler, Lawrence C. West, Paul E. Glenn, Kyle Preston, Farshid Ghasemi, Benjamin Cipriany, Jeremy Lackey
  • Publication number: 20220243265
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument for biological or chemical analyses. The pulsed laser may produce sub-100-ps optical pulses at a repetition rate commensurate with electronic data-acquisition rates. The optical pulses may excite samples in reaction chambers of the instrument, and be used to generate a reference clock for operating signal-acquisition and signal-processing electronics of the instrument.
    Type: Application
    Filed: February 15, 2019
    Publication date: August 4, 2022
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife
  • Publication number: 20220214279
    Abstract: Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An apparatus can include an assay chip that includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits emission energy; at least one element for directing the emission energy in a particular direction; and a light path along which the emission energy travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the assay chip. The instrument includes an excitation light source for exciting the sample in each sample well; a plurality of sensors corresponding the sample wells. Each sensor may detect emission energy from a sample in a respective sample well. The instrument includes at least one optical element that directs the emission energy from each sample well towards a respective sensor of the plurality of sensors.
    Type: Application
    Filed: March 25, 2022
    Publication date: July 7, 2022
    Applicant: Quantum-Si Incorporated
    Inventors: JONATHAN M. ROTHBERG, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Benjamin Ciperiany, Jack Jewell, Lawrence C. West, Michael Ferrigno, Paul E. Glenn, Adam Ezra Cohen, Anthony Bellofiore
  • Publication number: 20220209492
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument. The mode-locked laser can produce sub-50-ps optical pulses at a repetition rates between 200 MHz and 50 MHz, rates suitable for massively parallel data-acquisition. The optical pulses can be used to generate a reference clock signal for synchronizing data-acquisition and signal-processing electronics of the portable instrument.
    Type: Application
    Filed: March 16, 2022
    Publication date: June 30, 2022
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife, Benjamin Cipriany
  • Publication number: 20220170861
    Abstract: Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An apparatus can include an assay chip that includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits emission energy; at least one element for directing the emission energy in a particular direction; and a light path along which the emission energy travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the assay chip. The instrument includes an excitation light source for exciting the sample in each sample well; a plurality of sensors corresponding the sample wells. Each sensor may detect emission energy from a sample in a respective sample well. The instrument includes at least one optical element that directs the emission energy from each sample well towards a respective sensor of the plurality of sensors.
    Type: Application
    Filed: February 18, 2022
    Publication date: June 2, 2022
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Benjamin Cipriany, Jack Jewell, Lawrence C. West, Michael Ferrigno, Paul E. Glenn, Adam Ezra Cohen, Anthony Bellofiore
  • Patent number: 11322906
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument. The mode-locked laser can produce sub-50-ps optical pulses at a repetition rates between 200 MHz and 50 MHz, rates suitable for massively parallel data-acquisition. The optical pulses can be used to generate a reference clock signal for synchronizing data-acquisition and signal-processing electronics of the portable instrument.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: May 3, 2022
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife, Benjamin Cipriany