Patents by Inventor Jason Z. Lin

Jason Z. Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220230293
    Abstract: Mixed-mode includes receiving inspection results including one or more images of a selected region of the wafer, the one or more images include one or more wafer die including a set of repeating blocks, the set of repeating blocks a set of repeating cells. In addition, mixed-mode inspection includes adjusting a pixel size of the one or more images to map each cell, block and die to an integer number of pixels. Further, mixed-mode inspection includes comparing a first wafer die to a second wafer die to identify an occurrence of one or more defects in the first or second wafer die, comparing a first block to a second block to identify an occurrence of one or more defects in the first or second blocks and comparing a first cell to a second cell to identify an occurrence of one or more defects in the first or second cells.
    Type: Application
    Filed: April 4, 2022
    Publication date: July 21, 2022
    Inventors: Jason Z. Lin, Allen Park, Ellis Chang, Richard Wallingford, Songnian Rong, Chetana Bhaskar
  • Patent number: 11295438
    Abstract: Mixed-mode includes receiving inspection results including one or more images of a selected region of the wafer, the one or more images include one or more wafer die including a set of repeating blocks, the set of repeating blocks a set of repeating cells. In addition, mixed-mode inspection includes adjusting a pixel size of the one or more images to map each cell, block and die to an integer number of pixels. Further, mixed-mode inspection includes comparing a first wafer die to a second wafer die to identify an occurrence of one or more defects in the first or second wafer die, comparing a first block to a second block to identify an occurrence of one or more defects in the first or second blocks and comparing a first cell to a second cell to identify an occurrence of one or more defects in the first or second cells.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: April 5, 2022
    Assignee: KLA Corporation
    Inventors: Jason Z. Lin, Allen Park, Ellis Chang, Richard Wallingford, Songnian Rong, Chetana Bhaskar
  • Publication number: 20190108630
    Abstract: Mixed-mode includes receiving inspection results including one or more images of a selected region of the wafer, the one or more images include one or more wafer die including a set of repeating blocks, the set of repeating blocks a set of repeating cells. In addition, mixed-mode inspection includes adjusting a pixel size of the one or more images to map each cell, block and die to an integer number of pixels. Further, mixed-mode inspection includes comparing a first wafer die to a second wafer die to identify an occurrence of one or more defects in the first or second wafer die, comparing a first block to a second block to identify an occurrence of one or more defects in the first or second blocks and comparing a first cell to a second cell to identify an occurrence of one or more defects in the first or second cells.
    Type: Application
    Filed: November 30, 2018
    Publication date: April 11, 2019
    Inventors: Jason Z. Lin, Allen Park, Ellis Chang, Richard Wallingford, Songnian Rong, Chetana Bhaskar
  • Patent number: 10192303
    Abstract: Mixed-mode includes receiving inspection results including one or more images of a selected region of the wafer, the one or more images include one or more wafer die including a set of repeating blocks, the set of repeating blocks a set of repeating cells. In addition, mixed-mode inspection includes adjusting a pixel size of the one or more images to map each cell, block and die to an integer number of pixels. Further, mixed-mode inspection includes comparing a first wafer die to a second wafer die to identify an occurrence of one or more defects in the first or second wafer die, comparing a first block to a second block to identify an occurrence of one or more defects in the first or second blocks and comparing a first cell to a second cell to identify an occurrence of one or more defects in the first or second cells.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: January 29, 2019
    Assignee: KLA Tencor Corporation
    Inventors: Jason Z. Lin, Allen Park, Ellis Chang, Richard Wallingford, Songnian Rong, Chetana Bhaskar
  • Patent number: 9916653
    Abstract: One embodiment relates to an apparatus for detecting defects on a manufactured substrate. The apparatus includes an imaging tool arranged to obtain image frames from the manufactured substrate. The apparatus further includes a data processing system which includes computer-readable code configured to compute features for pixels in an image frame and divide the pixels in the image frame into feature-defined groups of pixels. The computer-readable code is further configured to select a feature-defined group, and generate a multi-dimensional feature distribution for the selected feature-defined group. Another embodiment relates to a method of detecting defects from a test images frame and multiple reference image frames. Other embodiments, aspects, and features are also disclosed.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: March 13, 2018
    Assignee: KLA-Tenor Corporation
    Inventor: Jason Z. Lin
  • Publication number: 20140153814
    Abstract: Mixed-mode includes receiving inspection results including one or more images of a selected region of the wafer, the one or more images include one or more wafer die including a set of repeating blocks, the set of repeating blocks a set of repeating cells. In addition, mixed-mode inspection includes adjusting a pixel size of the one or more images to map each cell, block and die to an integer number of pixels. Further, mixed-mode inspection includes comparing a first wafer die to a second wafer die to identify an occurrence of one or more defects in the first or second wafer die, comparing a first block to a second block to identify an occurrence of one or more defects in the first or second blocks and comparing a first cell to a second cell to identify an occurrence of one or more defects in the first or second cells.
    Type: Application
    Filed: November 11, 2013
    Publication date: June 5, 2014
    Applicant: KLA-Tencor Corporation
    Inventors: Jason Z. Lin, Allen Park, Ellis Chang, Richard Wallingford, Songnian Rong, Chetana Bhaskar
  • Patent number: 8692878
    Abstract: One embodiment relates to a method of automatically inspecting multiple array regions (102) simultaneously using an imaging apparatus (302). The method includes selecting (211 or 212) an optimal pixel size such that each array region in the multiple array regions has a grouped cell which is an integer number of pixels in size, and adjusting a pixel size of the imaging apparatus to be the selected optimal pixel size. Optimal pixel sizes within an available range of pixel sizes may be determined by finding (202) a largest common divider of cell sizes of the multiple array regions when the cell sizes are expressed in integers. Pre-set criteria may be applied to determine (208) which, if any, of the optimal pixel sizes are acceptable based on pre-set criteria. If none of the optimal pixel sizes are acceptable, then one of the array regions may be marked for digital interpolation (see 216). Other embodiments, aspects, and features are also disclosed.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: April 8, 2014
    Assignee: KLA-Tencor Corporation
    Inventors: Hong Chen, Jason Z. Lin
  • Patent number: 8645100
    Abstract: An inspection system for detecting anomalies on a substrate. The inspection system has a sensor array for generating image data. A first high speed network is coupled to the sensor array and receives and communicates the image data. An array of process nodes is coupled to the first high speed network, and receives and processes the image data to produce anomaly reports. Each process node has an interface card coupled to the first high speed network, that receives the image data from the first high speed network and formats the image data according to a high speed interface bus protocol. The interface card sets a register indicating whether a predetermined amount of image data has been stored in a memory, and the process node reads the register to determine whether the predetermined amount of image data has been stored in the memory, and initiates image processing when the register indicates that the predetermined amount of image data has been stored in the memory.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: February 4, 2014
    Assignee: KLA-Tencor Corporation
    Inventors: Krishnamurthy Bhaskar, Mark J. Roulo, John S. Taylor, Lawrence R. Miller, Paul T. Russell, Jason Z. Lin, Eliezer Rosengaus, Richard M. Wallingford, Kishore Bubna
  • Publication number: 20140002632
    Abstract: One embodiment relates to an apparatus for detecting defects on a manufactured substrate. The apparatus includes an imaging tool arranged to obtain image frames from the manufactured substrate. The apparatus further includes a data processing system which includes computer-readable code configured to compute features for pixels in an image frame and divide the pixels in the image frame into feature-defined groups of pixels. The computer-readable code is further configured to select a feature-defined group, and generate a multi-dimensional feature distribution for the selected feature-defined group. Another embodiment relates to a method of detecting defects from a test images frame and multiple reference image frames. Other embodiments, aspects, and features are also disclosed.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 2, 2014
    Inventor: Jason Z. LIN
  • Patent number: 8155428
    Abstract: A method of inspecting an array having memory blocks and page breaks. The array is imaged, and the image is divided into sections. Sections that include the memory blocks are selected into a candidate image. Pixels within a boundary horizontal line of pixels are inspected to determine horizontal edges of the memory blocks. Pixels within a boundary vertical line of pixels are inspected to determine vertical edges of the memory blocks. An image of a first memory block is compared to an image of a second memory block to determine differences. The differences are flagged as potential memory block defects. Images of the page breaks are compared to determine differences, and the differences are flagged as potential page break defects.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: April 10, 2012
    Assignee: KLA-Tencor Corporation
    Inventors: Jason Z. Lin, Xing Chu
  • Patent number: 8000922
    Abstract: Methods and systems for generating information to be used for selecting values for parameter(s) of a detection algorithm are provided. One method includes without user intervention performing a scan of an area of a wafer using an inspection system and default values for parameter(s) of a detection algorithm to detect defects on the wafer. The method also includes selecting a portion of the defects from results of the scan based on a predetermined maximum number of total defects to be used for selecting values for the parameter(s) of the detection algorithm. The method further includes storing information, which includes values for the parameter(s) of the detection algorithm determined for the defects in the portion. The information can be used to select the values for the parameter(s) of the detection algorithm to be used for the inspection recipe without performing an additional scan of the wafer subsequent to the scan.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: August 16, 2011
    Assignee: KLA-Tencor Corp.
    Inventors: Hong Chen, Michael J. Van Riet, Chien-Huei (Adam) Chen, Jason Z. Lin, Chris Maher, Michal Kowalski, Barry Becker, Stephanie Chen, Subramanian Balakrishnan, Suryanarayana Tummala
  • Publication number: 20110164130
    Abstract: One embodiment relates to a method of automatically inspecting multiple array regions (102) simultaneously using an imaging apparatus (302). The method includes selecting (211 or 212) an optimal pixel size such that each array region in the multiple array regions has a grouped cell which is an integer number of pixels in size, and adjusting a pixel size of the imaging apparatus to be the selected optimal pixel size. Optimal pixel sizes within an available range of pixel sizes may be determined by finding (202) a largest common divider of cell sizes of the multiple array regions when the cell sizes are expressed in integers. Pre-set criteria may be applied to determine (208) which, if any, of the optimal pixel sizes are acceptable based on pre-set criteria. If none of the optimal pixel sizes are acceptable, then one of the array regions may be marked for digital interpolation (see 216). Other embodiments, aspects, and features are also disclosed.
    Type: Application
    Filed: June 18, 2010
    Publication date: July 7, 2011
    Inventors: Hong Chen, Jason Z. Lin
  • Patent number: 7865037
    Abstract: An inspection system for detecting anomalies on a substrate. A first network is coupled to a sensor array and communicates data. Process nodes are coupled to the first network, and process the data to produce reports. Each process node includes memory sufficient to buffer the data until it can process the data. Each process node has an interface card that formats the data for a high speed interface bus that is coupled to the interface card. A computer receives and processes the data to produce the report. A second network receives the reports. A job manager is coupled to the second network, receives the reports, and sends information to the process nodes to coordinate processing of the data.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: January 4, 2011
    Assignee: KLA-Tencor Corporation
    Inventors: Krishnamurthy Bhaskar, Mark J. Roulo, John S. Taylor, Lawrence R. Miller, Paul T. Russell, Jason Z. Lin, Eliezer Rosengaus, Richard M. Wallingford, Kishore Bubna
  • Publication number: 20090299681
    Abstract: Methods and systems for generating information to be used for selecting values for parameter(s) of a detection algorithm are provided. One method includes without user intervention performing a scan of an area of a wafer using an inspection system and default values for parameter(s) of a detection algorithm to detect defects on the wafer. The method also includes selecting a portion of the defects from results of the scan based on a predetermined maximum number of total defects to be used for selecting values for the parameter(s) of the detection algorithm. The method further includes storing information, which includes values for the parameter(s) of the detection algorithm determined for the defects in the portion. The information can be used to select the values for the parameter(s) of the detection algorithm to be used for the inspection recipe without performing an additional scan of the wafer subsequent to the scan.
    Type: Application
    Filed: May 29, 2008
    Publication date: December 3, 2009
    Inventors: Hong Chen, Michael J. Van Riet, Chien-Huei (Adam) Chen, Jason Z. Lin, Chris Maher, Michal Kowalski, Barry Becker, Stephanie Chen, Subramanian Balakrishnan, Suryanarayana Tummala
  • Publication number: 20090290784
    Abstract: Methods and systems for binning defects detected on a specimen are provided. One method includes comparing a test image to reference images. The test image includes an image of one or more patterned features formed on the specimen proximate to a defect detected on the specimen. The reference images include images of one or more patterned features associated with different regions of interest within a device being formed on the specimen. If the one or more patterned features of the test image match the one or more patterned features of one of the reference images, the method includes assigning the defect to a bin corresponding to the region of interest associated with the reference image.
    Type: Application
    Filed: August 3, 2009
    Publication date: November 26, 2009
    Applicant: KLA-TENCOR TECHNOLOGIES CORPORATION
    Inventors: Jason Z. Lin, Xing Chu, Kenong Wu, Sharon McCauley
  • Patent number: 7602958
    Abstract: An inspection image analysis system. At least one image processing computer is configured to receive and analyze at least one portion of an image. At least one test computer is configured to receive at least one common portion of the image also received by the at least one image processing computer, and to analyze the at least one common portion, using equivalent image processes as the corresponding at least one image processing computer. A job manager is configured to assign the common portion and to configure the corresponding image processing computer and the test computer to run equivalent image processes.
    Type: Grant
    Filed: October 18, 2004
    Date of Patent: October 13, 2009
    Assignee: KLA-Tencor Corporation
    Inventors: Krishnamurthy Bhaskar, Mark J. Roulo, John S. Taylor, Lawrence R. Miller, Paul T. Russell, Jason Z. Lin, Eliezer Rosengaus, Richard M. Wallingford, Kishore Bubna
  • Patent number: 7570800
    Abstract: Methods and systems for binning defects detected on a specimen are provided. One method includes comparing a test image to reference images. The test image includes an image of one or more patterned features formed on the specimen proximate to a defect detected on the specimen. The reference images include images of one or more patterned features associated with different regions of interest within a device being formed on the specimen. If the one or more patterned features of the test image match the one or more patterned features of one of the reference images, the method includes assigning the defect to a bin corresponding to the region of interest associated with the reference image.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: August 4, 2009
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Jason Z. Lin, Xing Chu, Kenong Wu, Sharon McCauley
  • Patent number: 7555409
    Abstract: An inspection system. The inspection system has a sensor for generating data. A first network is coupled to the sensor and communicates the data. An array of nodes is coupled to the first network, and processes the data to produce reports. Each node has an interface coupled to the first network, and formats the data according to protocol. A bus is coupled to the interface A computer is coupled to the bus, and process the data according to an algorithm, to produce the report. The array of nodes is coupled to the first network in a daisy chain topology, and each node within a column of nodes receives common data with other nodes within the column. A second network is coupled to the nodes the second network, and receives the anomaly reports from the nodes and sends information to the nodes to coordinate processing of the data.
    Type: Grant
    Filed: October 18, 2004
    Date of Patent: June 30, 2009
    Assignee: KLA-Tencor Corporation
    Inventors: Krishnamurthy Bhaskar, Mark J. Roulo, John S. Taylor, Lawrence R. Miller, Paul T. Russell, Jason Z. Lin, Eliezer Rosengaus, Richard M. Wallingford, Kishore Bubna
  • Publication number: 20090067703
    Abstract: A method of inspecting an array having memory blocks with page breaks disposed between them. The memory array is imaged with a sensor at a magnification such that the memory cell size is a whole integer pixel multiple within the sensor. This creates an array image that is divided into sections. Those sections that include at least a portion of the memory blocks are selected into a candidate image. Pixels of the image within a boundary distance of a horizontal single line of pixels are inspected to determine horizontal edges of the memory blocks to an accuracy of a single pixel. Pixels of the image within a boundary distance of a vertical single line of pixels are inspected to determine vertical edges of the memory blocks to an accuracy of a single pixel.
    Type: Application
    Filed: August 25, 2008
    Publication date: March 12, 2009
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Jason Z. Lin, Xing Chu
  • Publication number: 20090067722
    Abstract: A method of inspecting an array having memory blocks with page breaks disposed between them. The memory array is imaged with a sensor at a magnification such that the memory block size is a whole integer pixel multiple within the sensor. This creates an array image that is divided into sections. Those sections that include at least a portion of the memory blocks are selected into a candidate image. Pixels of the image within a boundary distance of a horizontal single line of pixels are inspected to determine horizontal edges of the memory blocks to an accuracy of a single pixel. Pixels of the image within a boundary distance of a vertical single line of pixels are inspected to determine vertical edges of the memory blocks to an accuracy of a single pixel.
    Type: Application
    Filed: August 23, 2008
    Publication date: March 12, 2009
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Jason Z. Lin, Xing Chu