Patents by Inventor Javier A. Delacruz

Javier A. Delacruz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145438
    Abstract: A memory structure is provided, including a NAND block comprising a plurality of oxide layers, the plurality of layers forming a staircase structure at a first edge of the NAND block, a plurality of vias disposed on the staircase structure of NAND block, two or more of plurality of vias terminating along a same plane, a plurality of first bonding interconnects disposed on the plurality of vias, a plurality of bitlines extending across the NAND block, and a plurality of second bonding interconnects disposed along the bitlines. The memory structure may be stacked on another of the memory structure to form a stacked memory device.
    Type: Application
    Filed: November 27, 2023
    Publication date: May 2, 2024
    Inventors: Javier A. DeLaCruz, Belgacem Haba, Rajesh Katkar, Pearl Po-Yee Cheng
  • Patent number: 11967575
    Abstract: Structures and techniques provide bond enhancement in microelectronics by trapping contaminants and byproducts during bonding processes, and arresting cracks. Example bonding surfaces are provided with recesses, sinks, traps, or cavities to capture small particles and gaseous byproducts of bonding that would otherwise create detrimental voids between microscale surfaces being joined, and to arrest cracks. Such random voids would compromise bond integrity and electrical conductivity of interconnects being bonded. In example systems, a predesigned recess space or predesigned pattern of recesses placed in the bonding interface captures particles and gases, reducing the formation of random voids, thereby improving and protecting the bond as it forms. The recess space or pattern of recesses may be placed where particles collect on the bonding surface, through example methods of determining where mobilized particles move during bond wave propagation.
    Type: Grant
    Filed: February 25, 2022
    Date of Patent: April 23, 2024
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventors: Guilian Gao, Javier A. DeLaCruz, Shaowu Huang, Liang Wang, Gaius Gillman Fountain, Jr., Rajesh Katkar, Cyprian Emeka Uzoh
  • Publication number: 20240128186
    Abstract: In various embodiments, a passive electronic component is disclosed. The passive electronic component can have a first surface and a second surface opposite the first surface. The passive electronic component can include a nonconductive material and a capacitor embedded within the nonconductive material. The capacitor can have a first electrode, a second electrode, and a dielectric material disposed between the first and second electrodes. The first electrode can comprise a first conductive layer and a plurality of conductive fibers extending from and electrically connected to the first conductive layer. A first conductive via can extend through the passive electronic component from the first surface to the second surface, with the first conductive via electrically connected to the first electrode.
    Type: Application
    Filed: December 22, 2023
    Publication date: April 18, 2024
    Inventors: Belgacem Haba, Javier A. DeLaCruz
  • Publication number: 20240118492
    Abstract: Integrated optical waveguides, direct-bonded waveguide interface joints, optical routing and interconnects are provided. An example optical interconnect joins first and second optical conduits. A first direct oxide bond at room temperature joins outer claddings of the two optical conduits and a second direct bond joins the inner light-transmitting cores of the two conduits at an annealing temperature. The two low-temperature bonds allow photonics to coexist in an integrated circuit or microelectronics package without conventional high-temperatures detrimental to microelectronics. Direct-bonded square, rectangular, polygonal, and noncircular optical interfaces provide better matching with rectangular waveguides and better performance. Direct oxide-bonding processes can be applied to create running waveguides, photonic wires, and optical routing in an integrated circuit package or in chip-to-chip optical communications without need for conventional optical couplers.
    Type: Application
    Filed: November 14, 2023
    Publication date: April 11, 2024
    Inventors: Shaowu HUANG, Javier A. DELACRUZ, Liang WANG, Guilian GAO
  • Publication number: 20240096823
    Abstract: A bonded structure is disclosed. The bonded structure can include a semiconductor element comprising active circuitry. The bonded structure can include a protective element directly bonded to the semiconductor element without an adhesive along a bonding interface. The protective element can include an obstructive material disposed over at least a portion of the active circuitry. The obstructive material can be configured to obstruct external access to the active circuitry. The bonded structure can include a disruption structure configured to disrupt functionality of the at least a portion of the active circuitry upon debonding of the protective element from the semiconductor element.
    Type: Application
    Filed: November 27, 2023
    Publication date: March 21, 2024
    Inventors: Javier A. DeLaCruz, Belgacem Haba, Rajesh Katkar
  • Patent number: 11929347
    Abstract: Techniques and arrangements for performing exposure operations on a wafer utilizing both a stepper apparatus and an aligner apparatus. The exposure operations are performed with respect to large composite base dies, e.g., interposers, defined within the wafer, where the interposers will become a part of microelectronic devices by coupling with active dies or microchips. The composite base dies may be coupled to the active dies via “native interconnects” utilizing direct bonding techniques. The stepper apparatus may be used to perform exposure operations on active regions of the composite base dies to provide a fine pitch for the native interconnects, while the aligner apparatus may be used to perform exposure operations on inactive regions of the composite base dies to provide a coarse pitch for interfaces with passive regions of the composite base dies.
    Type: Grant
    Filed: January 19, 2022
    Date of Patent: March 12, 2024
    Assignee: ADEIA SEMICONDUCTOR TECHNOLOGIES LLC
    Inventors: Javier A. Delacruz, Belgacem Haba
  • Publication number: 20240079351
    Abstract: A bonded structure is disclosed. The bonded structure can include a semiconductor element comprising active circuitry. The bonded structure can include an obstructive element bonded to the semiconductor element along a bond interface, the obstructive element including an obstructive material disposed over the active circuitry, the obstructive material configured to obstruct external access to the active circuitry. The bonded element can include an artifact structure indicative of a wafer-level bond in which the semiconductor element and the obstructive element formed part of respective wafers directly bonded prior to singulation.
    Type: Application
    Filed: July 3, 2023
    Publication date: March 7, 2024
    Inventors: Javier A. DeLaCruz, Rajesh Katkar
  • Patent number: 11916076
    Abstract: The present disclosure provides chip architectures for FPGAs and other routing implementations that provide for increased memory with high bandwidth, in a reduced size, accessible with reduced latency. Such architectures include a first layer in advanced node and a second layer in legacy node. The first layer includes an active die, active circuitry, and a configurable memory, and the second layer includes a passive die with wiring. The second layer is bonded to the first layer such that the wiring of the second layer interconnects with the active circuitry of the first layer and extends an amount of wiring possible in the first layer.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: February 27, 2024
    Assignee: Adeia Semiconductor Inc.
    Inventors: Javier A. Delacruz, Don Draper, Jung Ko, Steven L. Teig
  • Patent number: 11901281
    Abstract: In various embodiments, a passive electronic component is disclosed. The passive electronic component can have a first surface and a second surface opposite the first surface. The passive electronic component can include a nonconductive material and a capacitor embedded within the nonconductive material. The capacitor can have a first electrode, a second electrode, and a dielectric material disposed between the first and second electrodes. The first electrode can comprise a first conductive layer and a plurality of conductive fibers extending from and electrically connected to the first conductive layer. A first conductive via can extend through the passive electronic component from the first surface to the second surface, with the first conductive via electrically connected to the first electrode.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: February 13, 2024
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventors: Belgacem Haba, Javier A. DeLaCruz
  • Patent number: 11894345
    Abstract: It is highly desirable in electronic systems to conserve space on printed circuit boards (PCB). This disclosure describes voltage regulation in electronic systems, and more specifically to integrating voltage regulators and associated passive components into semiconductor packages with at least a portion of the circuits whose voltage(s) they are regulating.
    Type: Grant
    Filed: November 23, 2022
    Date of Patent: February 6, 2024
    Assignee: Adeia Semiconductor Inc.
    Inventors: Javier A DeLaCruz, Don Draper, Belgacem Haba, Ilyas Mohammed
  • Patent number: 11881454
    Abstract: Some embodiments of the invention provide a three-dimensional (3D) circuit that is formed by stacking two or more integrated circuit (IC) dies to at least partially overlap and to share one or more interconnect layers that distribute power, clock and/or data-bus signals. The shared interconnect layers include interconnect segments that carry power, clock and/or data-bus signals. In some embodiments, the shared interconnect layers are higher level interconnect layers (e.g., the top interconnect layer of each IC die). In some embodiments, the stacked IC dies of the 3D circuit include first and second IC dies. The first die includes a first semiconductor substrate and a first set of interconnect layers defined above the first semiconductor substrate. Similarly, the second IC die includes a second semiconductor substrate and a second set of interconnect layers defined above the second semiconductor substrate.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: January 23, 2024
    Assignee: Adeia Semiconductor Inc.
    Inventors: Ilyas Mohammed, Steven L. Teig, Javier A. Delacruz
  • Patent number: 11876076
    Abstract: A memory structure is provided, including a NAND block comprising a plurality of oxide layers, the plurality of layers forming a staircase structure at a first edge of the NAND block, a plurality of vias disposed on the staircase structure of NAND block, two or more of plurality of vias terminating along a same plane, a plurality of first bonding interconnects disposed on the plurality of vias, a plurality of bitlines extending across the NAND block, and a plurality of second bonding interconnects disposed along the bitlines. The memory structure may be stacked on another of the memory structure to form a stacked memory device.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: January 16, 2024
    Assignee: Adeia Semiconductor Technologies LLC
    Inventors: Javier A. DeLaCruz, Belgacem Haba, Rajesh Katkar, Pearl Po-Yee Cheng
  • Patent number: 11862604
    Abstract: An integrated circuit and a method for designing an IC wherein the base or host chip is bonded to smaller chiplets via DBI technology. The bonding of chip to chiplet creates an uneven or multi-level surface of the overall chip requiring a releveling for future bonding. The uneven surface is built up with plating of bumps and subsequently releveled with various methods including planarization.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: January 2, 2024
    Assignee: Adeia Semiconductor Inc.
    Inventors: Javier A. Delacruz, Belgacem Haba, Cyprian Emeka Uzoh, Rajesh Katkar, Ilyas Mohammed
  • Patent number: 11860415
    Abstract: Integrated optical waveguides, direct-bonded waveguide interface joints, optical routing and interconnects are provided. An example optical interconnect joins first and second optical conduits. A first direct oxide bond at room temperature joins outer claddings of the two optical conduits and a second direct bond joins the inner light-transmitting cores of the two conduits at an annealing temperature. The two low-temperature bonds allow photonics to coexist in an integrated circuit or microelectronics package without conventional high-temperatures detrimental to microelectronics. Direct-bonded square, rectangular, polygonal, and noncircular optical interfaces provide better matching with rectangular waveguides and better performance. Direct oxide-bonding processes can be applied to create running waveguides, photonic wires, and optical routing in an integrated circuit package or in chip-to-chip optical communications without need for conventional optical couplers.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: January 2, 2024
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventors: Shaowu Huang, Javier A. Delacruz, Liang Wang, Guilian Gao
  • Patent number: 11862602
    Abstract: A microelectronic assembly may include a semiconductor wafer having first and second surfaces extending in first and second directions, the semiconductor wafer having network nodes connected to one another via local adjacent connections each extending in only one of the first and second directions, and an interconnection structure comprising a low-loss dielectric material and having first and second opposite surfaces extending in third and fourth directions each oriented at an oblique angle relative to the first and second directions, the interconnection structure having local oblique connections each extending in only one of the third and fourth directions. The semiconductor wafer may be directly bonded to the interconnection structure such that each of the network nodes is connected with at least one of the other network nodes, without use of conductive bonding material, through at least one of the local adjacent connections and at least one of the local oblique connections.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: January 2, 2024
    Assignee: ADEIA SEMICONDUCTOR TECHNOLOGIES LLC
    Inventors: Javier A. Delacruz, Richard E. Perego
  • Publication number: 20230420399
    Abstract: A bonded structure can include a first reconstituted element comprising a first element and having a first side comprising a first bonding surface and a second side opposite the first side. The first reconstituted element can comprise a first protective material disposed about a first sidewall surface of the first element. The bonded structure can comprise a second reconstituted element comprising a second element and having a first side comprising a second bonding surface and a second side opposite the first side. The first reconstituted element can comprise a second protective material disposed about a second sidewall surface of the second element. The second bonding surface of the first side of the second reconstituted element can be directly bonded to the first bonding surface of the first side of the first reconstituted element without an intervening adhesive along a bonding interface.
    Type: Application
    Filed: September 7, 2023
    Publication date: December 28, 2023
    Inventors: Belgacem Haba, Rajesh Katkar, Ilyas Mohammed, Javier A. DeLaCruz
  • Patent number: 11848284
    Abstract: A bonded structure is disclosed. The bonded structure can include a semiconductor element comprising active circuitry. The bonded structure can include a protective element directly bonded to the semiconductor element without an adhesive along a bonding interface. The protective element can include an obstructive material disposed over at least a portion of the active circuitry. The obstructive material can be configured to obstruct external access to the active circuitry. The bonded structure can include a disruption structure configured to disrupt functionality of the at least a portion of the active circuitry upon debonding of the protective element from the semiconductor element.
    Type: Grant
    Filed: June 7, 2022
    Date of Patent: December 19, 2023
    Assignee: Adeia Semiconductor Bonding Technologies Inc.
    Inventors: Javier A DeLaCruz, Belgacem Haba, Rajesh Katkar
  • Publication number: 20230395544
    Abstract: A bonded structure is disclosed. The bonded structure can include a first element that has a first plurality of contact pads. The first plurality of contact pads includes a first contact pad and a second redundant contact pad. The bonded structure can also include a second element directly bonded to the first element without an intervening adhesive. The second element has a second plurality of contact pads. The second plurality of contact pads includes a third contact pad and a fourth redundant contact pad. The first contact pad is configured to connect to the third contact pad. The second contact pad is configured to connect to the fourth contact pad. The bonded structure can include circuitry that has a first state in which an electrical signal is transferred to the first contact pad and a second state in which the electrical signal is transferred to the second contact pad.
    Type: Application
    Filed: June 22, 2023
    Publication date: December 7, 2023
    Inventors: Javier A. DeLaCruz, Belgacem Haba, Jung Ko
  • Patent number: 11837556
    Abstract: Apparatuses relating generally to a microelectronic package having protection from electromagnetic interference are disclosed. In an apparatus thereof, a platform has an upper surface and a lower surface opposite the upper surface and has a ground plane. A microelectronic device is coupled to the upper surface of the platform. Wire bond wires are coupled to the ground plane with a pitch. The wire bond wires extend away from the upper surface of the platform with upper ends of the wire bond wires extending above an upper surface of the microelectronic device. The wire bond wires are spaced apart from one another to provide a fence-like perimeter to provide an interference shielding cage. A conductive layer is coupled to at least a subset of the upper ends of the wire bond wires for electrical conductivity to provide a conductive shielding layer to cover the interference shielding cage.
    Type: Grant
    Filed: April 14, 2022
    Date of Patent: December 5, 2023
    Assignee: Adeia Semiconductor Technologies LLC
    Inventors: Shaowu Huang, Javier A. Delacruz
  • Patent number: 11830804
    Abstract: Techniques are disclosed herein for creating over and under interconnects. Using techniques described herein, over and under interconnects are created on an IC. Instead of creating signaling interconnects and power/ground interconnects on a same side of a chip assembly, the signaling interconnects can be placed on an opposing side of the chip assembly as compared to the power interconnects.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: November 28, 2023
    Assignee: Invensas LLC
    Inventors: Belgacem Haba, Stephen Morein, Ilyas Mohammed, Rajesh Katkar, Javier A. Delacruz