Patents by Inventor Jawahar M. Desai

Jawahar M. Desai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10709501
    Abstract: An ablation electrode is mounted on the distal end of a catheter with a first portion inside and a second portion outside the catheter. The second portion is adapted to have a surface that makes maximum contact with a tissue to be ablated, leaving a minimum area not covered by the tissue and potentially exposed to blood. The first portion is adapted to provide an extended surface area for efficient exchange of heat with a coolant flowing inside the catheter. Outlets provided near the area not covered by the tissue in the second portion prevents blood from getting close to or come directly in contact with the area, thereby greatly reducing formation of dangerous blood clots. The minimizing of an electrical circuit through blood greatly reduces wasted power into the electrode so that the efficiently cooled electrode is not burdened. The catheter preferably has multiple electrodes with similar features.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: July 14, 2020
    Assignee: Sirona Medical Technologies, Inc.
    Inventor: Jawahar M. Desai
  • Patent number: 10709499
    Abstract: An ablation electrode is mounted on the distal end of a catheter with a first portion inside and a second portion outside the catheter. The second portion is adapted to have a surface that makes maximum contact with a tissue to be ablated, leaving a minimum area not covered by the tissue and potentially exposed to blood. The first portion is adapted to provide an extended surface area for efficient exchange of heat with a coolant flowing inside the catheter. Outlets provided near the area not covered by the tissue in the second portion prevents blood from getting close to or come directly in contact with the area, thereby greatly reducing formation of dangerous blood clots. The minimizing of an electrical circuit through blood greatly reduces wasted power into the electrode so that the efficiently cooled electrode is not burdened. The catheter preferably has multiple electrodes with similar features.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: July 14, 2020
    Assignee: Sirona Medical Technologies, Inc.
    Inventor: Jawahar M. Desai
  • Publication number: 20190159836
    Abstract: An ablation electrode is mounted on the distal end of a catheter with a first portion inside and a second portion outside the catheter. The second portion is adapted to have a surface that makes maximum contact with a tissue to be ablated, leaving a minimum area not covered by the tissue and potentially exposed to blood. The first portion is adapted to provide an extended surface area for efficient exchange of heat with a coolant flowing inside the catheter. Outlets provided near the area not covered by the tissue in the second portion prevents blood from getting close to or come directly in contact with the area, thereby greatly reducing formation of dangerous blood clots. The minimizing of an electrical circuit through blood greatly reduces wasted power into the electrode so that the efficiently cooled electrode is not burdened. The catheter preferably has multiple electrodes with similar features.
    Type: Application
    Filed: January 30, 2019
    Publication date: May 30, 2019
    Inventor: Jawahar M. Desai
  • Publication number: 20170319274
    Abstract: An ablation electrode is mounted on the distal end of a catheter with a first portion inside and a second portion outside the catheter. The second portion is adapted to have a surface that makes maximum contact with a tissue to be ablated, leaving a minimum area not covered by the tissue and potentially exposed to blood. The first portion is adapted to provide an extended surface area for efficient exchange of heat with a coolant flowing inside the catheter. Outlets provided near the area not covered by the tissue in the second portion prevents blood from getting close to or come directly in contact with the area, thereby greatly reducing formation of dangerous blood clots. The minimizing of an electrical circuit through blood greatly reduces wasted power into the electrode so that the efficiently cooled electrode is not burdened. The catheter preferably has multiple electrodes with similar features.
    Type: Application
    Filed: July 27, 2017
    Publication date: November 9, 2017
    Inventor: Jawahar M. Desai
  • Patent number: 9717558
    Abstract: An ablation electrode is mounted on the distal end of a catheter with a first portion inside and a second portion outside the catheter. The second portion is adapted to have a surface that makes maximum contact with a tissue to be ablated, leaving a minimum area not covered by the tissue and potentially exposed to blood. The first portion is adapted to provide an extended surface area for efficient exchange of heat with a coolant flowing inside the catheter. Outlets provided near the area not covered by the tissue in the second portion prevents blood from getting close to or come directly in contact with the area, thereby greatly reducing formation of dangerous blood clots. The minimizing of an electrical circuit through blood greatly reduces wasted power into the electrode so that the efficiently cooled electrode is not burdened. The catheter preferably has multiple electrodes with similar features.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: August 1, 2017
    Assignee: Sirona Medical Technologies, Inc.
    Inventor: Jawahar M. Desai
  • Publication number: 20150066017
    Abstract: An ablation electrode is mounted on the distal end of a catheter with a first portion inside and a second portion outside the catheter. The second portion is adapted to have a surface that makes maximum contact with a tissue to be ablated, leaving a minimum area not covered by the tissue and potentially exposed to blood. The first portion is adapted to provide an extended surface area for efficient exchange of heat with a coolant flowing inside the catheter. Outlets provided near the area not covered by the tissue in the second portion prevents blood from getting close to or come directly in contact with the area, thereby greatly reducing formation of dangerous blood clots. The minimizing of an electrical circuit through blood greatly reduces wasted power into the electrode so that the efficiently cooled electrode is not burdened. The catheter preferably has multiple electrodes with similar features.
    Type: Application
    Filed: November 7, 2014
    Publication date: March 5, 2015
    Inventor: Jawahar M. Desai
  • Patent number: 8882761
    Abstract: An ablation electrode is mounted on the distal end of a catheter with a first portion inside and a second portion outside the catheter. The second portion is adapted to have a surface that makes maximum contact with a tissue to be ablated, leaving a minimum area not covered by the tissue and potentially exposed to blood. The first portion is adapted to provide an extended surface area for efficient exchange of heat with a coolant flowing inside the catheter. Outlets provided near the area not covered by the tissue in the second portion prevents blood from getting close to or come directly in contact with the area, thereby greatly reducing formation of dangerous blood clots. The minimizing of an electrical circuit through blood greatly reduces wasted power into the electrode so that the efficiently cooled electrode is not burdened. The catheter preferably has multiple electrodes with similar features.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: November 11, 2014
    Assignee: Catheffects, Inc.
    Inventor: Jawahar M. Desai
  • Patent number: 8457721
    Abstract: Cardiac mapping and ablation include a multi-electrode catheter introduced percutaneously into a subject's heart and deployable adjacent to various endocardial sites. The electrodes are connectable to a mapping unit, an ablation power unit a pacing unit, all of which are under computer control. Intracardiac electrogram signals emanated from a tachycardia site of origin are detectable by the electrodes. Their arrival times are processed to generate various visual maps to provide real-time guidance for steering the catheter to the tachycardia site of origin. In another aspect, the system also includes a physical imaging system which is capable of providing different imaged physical views of the catheter and the heart. These physical views are incorporated into the various visual maps to provide a more physical representation. Once the electrodes are on top of the tachycardia site of origin, electrical energy is supplied by the ablation power unit to effect ablation.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: June 4, 2013
    Assignee: CathEffects, Inc.
    Inventor: Jawahar M. Desai
  • Publication number: 20120108957
    Abstract: Cardiac mapping and ablation include a multi-electrode catheter introduced percutaneously into a subject's heart and deployable adjacent to various endocardial sites. The electrodes are connectable to a mapping unit, an ablation power unit a pacing unit, all of which are under computer control. Intracardiac electrogram signals emanated from a tachycardia site of origin are detectable by the electrodes. Their arrival times are processed to generate various visual maps to provide real-time guidance for steering the catheter to the tachycardia site of origin. In another aspect, the system also includes a physical imaging system which is capable of providing different imaged physical views of the catheter and the heart. These physical views are incorporated into the various visual maps to provide a more physical representation. Once the electrodes are on top of the tachycardia site of origin, electrical energy is supplied by the ablation power unit to effect ablation.
    Type: Application
    Filed: October 31, 2011
    Publication date: May 3, 2012
    Applicant: CathEffects, Inc.
    Inventor: Jawahar M. Desai
  • Patent number: 8050732
    Abstract: A system and method for cardiac mapping and ablation include a multi-electrode catheter introduced percutaneously into a subject's heart and deployable adjacent to various endocardial sites. The electrodes are connectable to a mapping unit, an ablation power unit a pacing unit, all of which are under computer control. Intracardiac electrogram signals emanated from a tachycardia site of origin are detectable by the electrodes. Their arrival times are processed to generate various visual maps to provide real-time guidance for steering the catheter to the tachycardia site of origin. In another aspect, the system also include a physical imaging system which is capable of providing different imaged physical views of the catheter and the heart. These physical views are incorporated into the various visual maps to provide a more physical representation. Once the electrodes are on top of the tachycardia site of origin, electrical energy is supplied by the ablation power unit to effect ablation.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: November 1, 2011
    Assignee: Catheffects, Inc.
    Inventor: Jawahar M. Desai
  • Publication number: 20100204598
    Abstract: A system and method for cardiac mapping and ablation include a multi-electrode catheter introduced percutaneously into a subject's heart and deployable adjacent to various endocardial sites. The electrodes are connectable to a mapping unit, an ablation power unit a pacing unit, all of which are under computer control. Intracardiac electrogram signals emanated from a tachycardia site of origin are detectable by the electrodes. Their arrival times are processed to generate various visual maps to provide real-time guidance for steering the catheter to the tachycardia site of origin. In another aspect, the system also include a physical imaging system which is capable of providing different imaged physical views of the catheter and the heart. These physical views are incorporated into the various visual maps to provide a more physical representation. Once the electrodes are on top of the tachycardia site of origin, electrical energy is supplied by the ablation power unit to effect ablation.
    Type: Application
    Filed: April 19, 2010
    Publication date: August 12, 2010
    Applicant: CathEffects, Inc.
    Inventor: Jawahar M. Desai
  • Publication number: 20100016848
    Abstract: An ablation electrode is mounted on the distal end of a catheter with a first portion inside and a second portion outside the catheter. The second portion is adapted to have a surface that makes maximum contact with a tissue to be ablated, leaving a minimum area not covered by the tissue and potentially exposed to blood. The first portion is adapted to provide an extended surface area for efficient exchange of heat with a coolant flowing inside the catheter. Outlets provided near the area not covered by the tissue in the second portion prevents blood from getting close to or come directly in contact with the area, thereby greatly reducing formation of dangerous blood clots. The minimizing of an electrical circuit through blood greatly reduces wasted power into the electrode so that the efficiently cooled electrode is not burdened. The catheter preferably has multiple electrodes with similar features.
    Type: Application
    Filed: July 15, 2008
    Publication date: January 21, 2010
    Applicant: CathEffects, LLC
    Inventor: Jawahar M. Desai
  • Publication number: 20090048511
    Abstract: An improved endocardial catheter includes a plurality of longitudinally extending openings adjacent intermediate portions at its distal end. The catheter is actuable from a retracted or collapsed mode, wherein the sealed openings are arranged around the tubular catheter surface, to an expanded mode. The plurality of longitudinal openings in the catheter wall enable radial expansion of the tubular surface at the distal end so that intermediate portions of the tubular catheter surface are moved to an operative position radially outward from their position in the retracted mode. In the expanded position, the intermediate portions form wings around the distal end, revealing a cavity within the tubular catheter for the release of contrast material or other fluid into endocardial sites through the longitudinal openings.
    Type: Application
    Filed: August 18, 2008
    Publication date: February 19, 2009
    Inventor: Jawahar M. Desai
  • Patent number: 7151964
    Abstract: Multi-phase RF ablation employing a two-dimensional or three-dimensional electrode array produces a multitude of currents paths on the surface of the ablation zone. This results in a uniform lesion with a size defined by the span of the electrode array. An orthogonal electrode catheter array suitable for cardiac ablation is used in conjunction with a two-phase RF power source to produce uniform square-shaped lesions of size 1.2 cm2. Lesions of larger size are created by successive adjacent placement of the square-shaped lesions. A temperature sensor at the electrode tip allows monitoring of ablation temperature and regulation of thereof to minimize the electrode tips from being fouled by coagulum. In another embodiment, an external auxiliary electrode is used in combination with the catheter electrodes. This also produces lesions of greater depth. In yet another embodiment, ablation is performed with a sequence of elementary electrode-electrical configurations.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: December 19, 2006
    Inventors: Jawahar M. Desai, Htay L. Nyo
  • Publication number: 20040152980
    Abstract: An improved endocardial catheter includes a plurality of longitudinally extending-openings adjacent intermediate portions at its distal end. The catheter is actuable from a retracted or collapsed mode, wherein the sealed openings are arranged around the tubular catheter surface, to an expanded mode. The plurality of longitudinal openings in the catheter wall enable radial expansion of the tubular surface at the distal end so that intermediate portions of the tubular catheter surface are moved to an operative position radially outward from their position in the retracted mode. In the expanded position, the intermediate portions form wings around the distal end, revealing a cavity within the tubular catheter for the release of contrast material-or other fluid into endocardial sites through the longitudinal openings.
    Type: Application
    Filed: January 23, 2004
    Publication date: August 5, 2004
    Inventor: Jawahar M. Desai
  • Patent number: 6738673
    Abstract: A multipolar electrode catheter includes a central and four side electrodes at its distal end. The catheter is actuable from a retracted or collapsed mode wherein the side electrodes are arranged around the tubular catheter outer surface to an expanded mode. A plurality of longitudinal slits in the catheter wall enable radial expansion of the distal end so that the side electrodes are moved to an operative position radially outward from their position in the retracted mode. In the expanded position, the side electrodes lie in the same plane and equally spaced from adjacent electrodes. Electrode leads connected to the electrodes enable the electrodes to be used both for mapping and ablation of endocardial sites.
    Type: Grant
    Filed: August 21, 2002
    Date of Patent: May 18, 2004
    Inventor: Jawahar M. Desai
  • Patent number: 6701180
    Abstract: An improved endocardial catheter includes a plurality of longitudinally extending openings adjacent intermediate portions at its distal end. The catheter is actuable from a retracted or collapsed mode, wherein the sealed openings are arranged around the tubular catheter surface, to an expanded mode. The plurality of longitudinal openings in the catheter wall enable radial expansion of the tubular surface at the distal end so that intermediate portions of the tubular catheter surface are moved to an operative position radially outward from their position in the retracted mode. In the expanded position, the intermediate portions form wings around the distal end, revealing a cavity within the tubular catheter for the release of contrast material or other fluid into endocardial sites through the longitudinal openings.
    Type: Grant
    Filed: April 17, 2000
    Date of Patent: March 2, 2004
    Inventor: Jawahar M. Desai
  • Publication number: 20030199868
    Abstract: Multi-phase RF ablation employing a two-dimensional or three-dimensional electrode array produces a multitude of currents paths on the surface of the ablation zone. This results in a uniform lesion with a size defined by the span of the electrode array. An orthogonal electrode catheter array suitable for cardiac ablation is used in conjunction with a two-phase RF power source to produce uniform square-shaped lesions of size 1.2 cm2. Lesions of larger size are created by successive adjacent placement of the square-shaped lesions. A temperature sensor at the electrode tip allows monitoring of ablation temperature and regulation of thereof to minimize the electrode tips from being fouled by coagulum. In another embodiment, an external auxiliary electrode is used in combination with the catheter electrodes. This also produces lesions of greater depth. In yet another embodiment, ablation is performed with a sequence of elementary electrode-electrical configurations.
    Type: Application
    Filed: May 30, 2003
    Publication date: October 23, 2003
    Inventors: Jawahar M. Desai, Htay L. Nyo
  • Publication number: 20030181819
    Abstract: A system and method for cardiac mapping and ablation include a multi-electrode catheter introduced percutaneously into a subject's heart and deployable adjacent to various endocardial sites. The electrodes are connectable to a mapping unit, an ablation power unit a pacing unit, all of which are under computer control. Intracardiac electrogram signals emanated from a tachycardia site of origin are detectable by the electrodes. Their arrival times are processed to generate various visual maps to provide real-time guidance for steering the catheter to the tachycardia site of origin. In another aspect, the system also include a physical imaging system which is capable of providing different imaged physical views of the catheter and the heart. These physical views are incorporated into the various visual maps to provide a more physical representation. Once the electrodes are on top of the tachycardia site of origin, electrical energy is supplied by the ablation power unit to effect ablation.
    Type: Application
    Filed: February 11, 2003
    Publication date: September 25, 2003
    Inventor: Jawahar M. Desai
  • Publication number: 20030060865
    Abstract: A multipolar electrode catheter includes a central and four side electrodes at its distal end. The catheter is actuable from a retracted or collapsed mode wherein the side electrodes are arranged around the tubular catheter outer surface to an expanded mode. A plurality of longitudinal slits in the catheter wall enable radial expansion of the distal end so that the side electrodes are moved to an operative position radially outward from their position in the retracted mode. In the expanded position, the side electrodes lie in the same plane and equally spaced from adjacent electrodes. Electrode leads connected to the electrodes enable the electrodes to be used both for mapping and ablation of endocardial sites.
    Type: Application
    Filed: August 21, 2002
    Publication date: March 27, 2003
    Inventor: Jawahar M. Desai