Patents by Inventor Jay Walton

Jay Walton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060088007
    Abstract: Transmitter and receiver units for use in an OFDM communications system and configurable to support multiple types of services. The transmitter unit includes one or more encoders, a symbol mapping element, and a modulator. Each encoder receives and codes a respective channel data stream to generate a corresponding coded data stream. The symbol mapping element receives and maps data from the coded data streams to generate modulation symbol vectors, with each modulation symbol vector including a set of data values used to modulate a set of tones to generate an OFDM symbol. The modulator modulates the modulation symbol vectors to provide a modulated signal suitable for transmission. The data from each coded data stream is mapped to a respective set of one or more “circuits”. Each circuit can be defined to include a number of tones from a number of OFDM symbols, a number of tones from a single OFDM symbol, all tones from one or more OFDM symbols, or some other combination of tones.
    Type: Application
    Filed: December 7, 2005
    Publication date: April 27, 2006
    Inventors: Ahmad Jalali, Jay Walton, Mark Wallace
  • Publication number: 20060067421
    Abstract: Techniques for transmitting data using a combination of transmit diversity schemes are described. These transmit diversity schemes include spatial spreading, continuous beamforming, cyclic delay diversity, space-time transmit diversity (STTD), space-frequency transmit diversity (SFTD), and orthogonal transmit diversity (OTD). A transmitting entity processes one or more (ND) data symbol streams based on a transmit diversity scheme (e.g., STTD, SFTD, or OTD) to generate multiple (NC) coded symbol streams. Each data symbol stream may be sent as a single coded symbol stream or as multiple (e.g., two) coded symbol streams using STTD, SFTD, or OTD. The transmitting entity may perform spatial spreading on the NC coded symbol streams with different matrices to generate multiple (NT) transmit symbol streams for transmission from NT antennas. Additionally or alternatively, the transmitting entity may perform continuous beamforming on the NT transmit symbol streams in either the time domain or the frequency domain.
    Type: Application
    Filed: September 1, 2005
    Publication date: March 30, 2006
    Inventors: Jay Walton, John Ketchum, Mark Wallace, Steven Howard
  • Publication number: 20060063494
    Abstract: A multi-antenna station has multiple remote front-ends coupled to multiple antennas. Each remote front-end includes a power amplifier (PA), a low noise amplifier (LNA), and first and second coupling units. On the transmit path, a first RF signal is received via a first port, routed by the first coupling unit to the power amplifier, amplified to obtain the desired output power level, and routed by the second coupling unit to a second port for transmission via the antenna. On the receive path, a second RF signal is received via the second port, routed by the second coupling unit to the LNA, amplified to obtain a higher signal level, and routed by the first coupling unit to the first port for transmission to the transceiver.
    Type: Application
    Filed: March 7, 2005
    Publication date: March 23, 2006
    Inventors: Xiangdon Zhang, Jay Walton
  • Publication number: 20060050770
    Abstract: A receiving entity obtains received symbols for a data transmission having at least one data symbol stream sent with space-time transmit diversity (STTD). The receiving entity derives an overall channel response matrix in accordance with the STTD encoding scheme used for the data transmission, derives a spatial filter matrix based on the overall channel response matrix, and performs spatial matched filtering on a vector of received symbols for each 2-symbol interval to obtain a vector of detected symbols for the 2-symbol interval. The receiving entity may perform post-processing (e.g., conjugation) on the detected symbols if needed. Alternatively, the receiving entity derives a spatial filter matrix based on an effective channel response matrix, performs spatial matched filtering on the received symbols for each symbol period to obtain detected symbols for that symbol period, and combines multiple estimates obtained for each data symbol sent with STTD.
    Type: Application
    Filed: January 24, 2005
    Publication date: March 9, 2006
    Inventors: Mark Wallace, Irina Medvedev, Jay Walton
  • Publication number: 20060039312
    Abstract: Techniques to schedule terminals for data transmission on the downlink and/or uplink in a MIMO-OFDM system based on the spatial and/or frequency “signatures” of the terminals. A scheduler forms one or more sets of terminals for possible (downlink or uplink) data transmission for each of a number of frequency bands. One or more sub-hypotheses may further be formed for each hypothesis, with each sub-hypothesis corresponding to (1) specific assignments of transmit antennas to the terminal(s) in the hypothesis (for the downlink) or (2) a specific order for processing the uplink data transmissions from the terminal(s) (for the uplink). The performance of each sub-hypothesis is then evaluated (e.g., based on one or more performance metrics). One sub-hypothesis is then selected for each frequency band based on the evaluated performance, and the one or more terminals in each selected sub-hypothesis are then scheduled for data transmission on the corresponding frequency band.
    Type: Application
    Filed: October 11, 2005
    Publication date: February 23, 2006
    Inventors: Jay Walton, John Ketchum, Mark Wallace, Irina Medvedev
  • Publication number: 20060023666
    Abstract: Transmitter and receiver units for use in an OFDM communications system and configurable to support multiple types of services. The transmitter unit includes one or more encoders, a symbol mapping element, and a modulator. Each encoder receives and codes a respective channel data stream to generate a corresponding coded data stream. The symbol mapping element receives and maps data from the coded data streams to generate modulation symbol vectors, with each modulation symbol vector including a set of data values used to modulate a set of tones to generate an OFDM symbol. The modulator modulates the modulation symbol vectors to provide a modulated signal suitable for transmission. The data from each coded data stream is mapped to a respective set of one or more “circuits”. Each circuit can be defined to include a number of tones from a number of OFDM symbols, a number of tones from a single OFDM symbol, all tones from one or more OFDM symbols, or some other combination of tones.
    Type: Application
    Filed: June 23, 2005
    Publication date: February 2, 2006
    Inventors: Ahmad Jalali, Jay Walton
  • Publication number: 20060018287
    Abstract: A transmitting entity transmits a “base” pilot in each protocol data unit (PDU). A receiving entity is able to derive a sufficiently accurate channel response estimate of a MIMO channel with the base pilot under nominal (or most) channel conditions. The transmitting entity selectively transmits an additional pilot if and as needed, e.g., based on channel conditions and/or other factors. The additional pilot may be adaptively inserted in almost any symbol period in the PDU. The receiving entity is able to derive an improved channel response estimate with the additional pilot. The transmitting entity sends signaling to indicate that additional pilot is being sent. This signaling may be embedded within pilot symbols sent on a set of pilot subbands used for a carrier pilot that is transmitted across most of the PDU. The signaling indicates whether additional pilot is being sent and possibly other pertinent information.
    Type: Application
    Filed: July 20, 2004
    Publication date: January 26, 2006
    Inventors: Jay Walton, Mark Wallace
  • Publication number: 20060013250
    Abstract: A “unified” MIMO system that supports multiple operating modes for efficient data transmission is described. Each operating mode is associated with different spatial processing at a transmitting entity. For example, four operating modes may be defined for (1) full-CSI or partial-CSI transmission and (2) with or without steering transmit diversity (STD). An appropriate operating mode may be selected for use based on various factors (e.g., availability of a good channel estimate). With steering transmit diversity, data is spatially spread and transmitted on multiple spatial channels, and a single rate may then be used for all spatial channels used for data transmission. A receiving entity may utilize a minimum mean square error (MMSE) technique for all operating modes. The receiving entity may derive a spatial filter matrix and perform receiver spatial processing in the same manner for all operating modes, albeit with different effective channel response matrices.
    Type: Application
    Filed: July 15, 2004
    Publication date: January 19, 2006
    Inventors: Steven Howard, Jay Walton, Mark Wallace
  • Publication number: 20060002496
    Abstract: Techniques for efficiently computing spatial filter matrices are described. The channel response matrices for a MIMO channel may be highly correlated if the channel is relatively static over a range of transmission spans. In this case, an initial spatial filter matrix may be derived based on one channel response matrix, and a spatial filter matrix for each transmission span may be computed based on the initial spatial filter matrix and a steering matrix used for that transmission span. The channel response matrices may be partially correlated if the MIMO channel is not static but does not change abruptly. In this case, a spatial filter matrix may be derived for one transmission span l and used to derive an initial spatial filter matrix for another transmission span m. A spatial filter matrix for transmission span m may be computed based on the initial spatial filter matrix, e.g., using an iterative procedure.
    Type: Application
    Filed: June 30, 2004
    Publication date: January 5, 2006
    Inventors: Mark Wallace, Jay Walton, Steven Howard
  • Publication number: 20050276344
    Abstract: Coding techniques for a (e.g., OFDM) communication system capable of transmitting data on a number of “transmission channels” at different information bit rates based on the channels' achieved SNR. A base code is used in combination with common or variable puncturing to achieve different coding rates required by the transmission channels. The data (i.e., information bits) for a data transmission is encoded with the base code, and the coded bits for each channel (or group of channels with the similar transmission capabilities) are punctured to achieve the required coding rate. The coded bits may be interleaved (e.g., to combat fading and remove correlation between coded bits in each modulation symbol) prior to puncturing. The unpunctured coded bits are grouped into non-binary symbols and mapped to modulation symbols (e.g., using Gray mapping). The modulation symbol may be “pre-conditioned” and prior to transmission.
    Type: Application
    Filed: August 18, 2005
    Publication date: December 15, 2005
    Inventors: Fuyun Ling, Nagabhushana Sindhushayana, Jay Walton, Mark Wallace, Ivan Fernandez
  • Publication number: 20050265275
    Abstract: A transmitting entity performs spatial processing on data symbols for each subband with an eigenmode matrix, a steering matrix, or an identity matrix to obtain spatially processed symbols for the subband. The data symbols may be sent on orthogonal spatial channels with the eigenmode matrix, on different spatial channels with the steering matrix, or from different transmit antennas with the identity matrix. The transmitting entity further performs beamforming on the spatially processed symbols, in the frequency domain or time domain, prior to transmission from the multiple transmit antennas. A receiving entity performs the complementary processing to recover the data symbols sent by the transmitting entity. The receiving entity may derive a spatial filter matrix for each subband based on a MIMO channel response matrix for that subband and perform receiver spatial processing for the subband with the spatial filter matrix.
    Type: Application
    Filed: February 3, 2005
    Publication date: December 1, 2005
    Inventors: Steven Howard, Jay Walton, Mark Wallace
  • Publication number: 20050250452
    Abstract: A power-efficient wireless device is equipped with multiple (N) antennas. Each antenna is associated with a transmitter unit and a receiver unit. The wireless device also has processing units used to perform various digital processing tasks. The transmitter units, receiver units, and processing units may be selectively enabled or disabled. In an idle state, the wireless device may enable only a subset (e.g., one) of the N receiver units and one or few processing units for signal detection and acquisition. For active communication, the wireless device may enable Ntx transmitter units for data transmission and/or Nrx receiver units for data reception, where 1?Ntx?N and 1?Nrx?N. The enabled processing units may also be clocked at a lower frequency whenever data is transmitted or received at a data rate lower than the highest data rate. The wireless device may go to sleep whenever possible to conserve power.
    Type: Application
    Filed: January 31, 2005
    Publication date: November 10, 2005
    Inventors: Jay Walton, Franklin Antonio, Mark Wallace, Sriram Narayan
  • Publication number: 20050249174
    Abstract: A transmitting entity uses different steering vectors for different subbands to achieve steering diversity. Each steering vector defines or forms a beam for an associated subband. Any steering vector may be used for steering diversity. The steering vectors may be defined such that the beams vary in a continuous instead of abrupt manner across the subbands. This may be achieved by applying continuously changing phase shifts across the subbands for each transmit antenna. As an example, the phase shifts may change in a linear manner across the subbands for each transmit antenna, and each antenna may be associated with a different phase slope. The application of linearly changing phase shifts to modulation symbols in the frequency domain may be achieved by either delaying or circularly shifting the corresponding time-domain samples.
    Type: Application
    Filed: February 24, 2005
    Publication date: November 10, 2005
    Inventors: Stein Lundby, Steven Howard, Jay Walton
  • Publication number: 20050249159
    Abstract: To select a transmission mode to use for a data transmission via a MIMO channel from station A to station B, station A obtains channel information used for spatial processing and determines the age of this information. Station A selects one of multiple transmission modes based on the age of the channel information and possibly other information (e.g., the fading characteristic of the MIMO channel). To select rate(s) to use for the data transmission, station A obtains channel state information (CSI) indicative of the received signal quality for the MIMO channel, e.g., received SNRs or “initial” rates. Station A determines the age of the CSI and selects one or more “final” rates based on the CSI, the age of the CSI, the selected transmission mode, and possibly other information. Station A processes data in accordance with the selected transmission mode and final rate(s) and transmits the processed data to station B.
    Type: Application
    Filed: April 6, 2005
    Publication date: November 10, 2005
    Inventors: Santosh Abraham, Arnaud Meylan, Jay Walton
  • Publication number: 20050238111
    Abstract: Techniques for generating and using steering matrices for pseudo-random transmit steering (PRTS) are described. For PRTS, a transmitting entity performs spatial processing with steering matrices so that a data transmission observes an ensemble of “effective” channels formed by the actual channel used for data transmission and the steering matrices used for PRTS. The steering matrices may be generated by selecting a base matrix, which may be a Walsh matrix or a Fourier matrix. Different combinations of scalars are then selected, with each combination including at least one scalar for at least one row of the base matrix. Each scalar may be a real or complex value (e.g., +1, ?1, +j, or ?j, where j={square root}{square root over (?1)}). Different steering matrices are generated by multiplying the base matrix with each of the different combinations of scalars. The steering matrices are different permutations of the base matrix.
    Type: Application
    Filed: April 9, 2004
    Publication date: October 27, 2005
    Inventors: Mark Wallace, Jay Walton, Steven Howard
  • Publication number: 20050192037
    Abstract: An ad hoc network with distributed hierarchical scheduling is disclosed. In one aspect, stations in a network mesh detect interfering neighbor stations and form interference lists. Stations transmit their interference lists. Scheduling stations schedule allocations for child stations in response to interference lists, received remote allocations, or a combination thereof. Coordination messages are transmitted including frame structure, allocations, and interference lists, among others. In another aspect, an ad hoc mesh network may be organized into a tree topology. In an example wireless backhaul network, this matches traffic flow. Distributed, hierarchical scheduling is provided where parents schedule communication with children while respecting already scheduled transmissions to/from interferers and to/from interferers of their respective children.
    Type: Application
    Filed: January 26, 2005
    Publication date: September 1, 2005
    Inventors: Sanjiv Nanda, Jay Walton
  • Publication number: 20050175115
    Abstract: Spatial spreading is performed in a multi-antenna system to randomize an “effective” channel observed by a receiving entity for each transmitted data symbol block. For a MIMO system, at a transmitting entity, data is processed (e.g., encoded, interleaved, and modulated) to obtain ND data symbol blocks to be transmitted in NM transmission spans, where ND?1 and NM>1. The ND blocks are partitioned into NM data symbol subblocks, one subblock for each transmission span. A steering matrix is selected (e.g., in a deterministic or pseudo-random manner from among a set of L steering matrices, where L>1) for each subblock. Each data symbol subblock is spatially processed with the steering matrix selected for that subblock to obtain transmit symbols, which are further processed and transmitted via NT transmit antennas in one transmission span. The ND data symbol blocks are thus spatially processed with NM steering matrices and observe an ensemble of channels.
    Type: Application
    Filed: December 9, 2004
    Publication date: August 11, 2005
    Inventors: Jay Walton, Lizhong Zheng, John Ketchum, Mark Wallace, Steven Howard
  • Publication number: 20050159735
    Abstract: An apparatus and method for automatic operation of a refrigeration system to provide refrigeration power to a catheter for tissue ablation or mapping. The primary refrigeration system can be open loop or closed loop, and a precool loop will typically be closed loop. Equipment and procedures are disclosed for bringing the system to the desired operational state, for controlling the operation by controlling refrigerant flow rate, for performing safety checks, and for achieving safe shutdown. The catheter-based system for performing a cryoablation procedure uses a precooler to lower the temperature of a fluid refrigerant to a sub-cool temperature (?40° C.) at a working pressure (400 psi). The sub-cooled fluid is then introduced into a supply line of the catheter. Upon outflow of the primary fluid from the supply line, and into a tip section of the catheter, the fluid refrigerant boils at an outflow pressure of approximately one atmosphere, at a temperature of about ?88° C.
    Type: Application
    Filed: July 9, 2004
    Publication date: July 21, 2005
    Inventors: Jay Walton, Lizhong Zheng, John Ketchum, Mark Wallace, Steven Howard
  • Publication number: 20050157806
    Abstract: An access point in a multi-antenna system broadcasts data using spatial spreading to randomize an “effective” channel observed by each user terminal for each block of data symbols broadcast by the access point. At the access point, data is coded, interleaved, and modulated to obtain ND data symbol blocks to be broadcast in NM transmission spans, where ND?1 and NM>1. The ND data symbol blocks are partitioned into NM data symbol subblocks, one subblock for each transmission span. A steering matrix is selected (e.g., in a deterministic or pseudo-random manner from among a set of L steering matrices) for each subblock. Each data symbol subblock is spatially processed with the steering matrix selected for that subblock to obtain transmit symbols, which are further processed and broadcast via NT transmit antennas and in one transmission span to user terminals within a broadcast coverage area.
    Type: Application
    Filed: December 9, 2004
    Publication date: July 21, 2005
    Inventors: Jay Walton, John Ketchum, Mark Wallace, Steven Howard
  • Publication number: 20050157811
    Abstract: Techniques to iteratively detect and decode data transmitted in a wireless (e.g., MIMO-OFDM) communication system. The iterative detection and decoding is performed by iteratively passing soft (multi-bit) “a priori” information between a detector and a decoder. The detector receives modulation symbols, performs a detection function that is complementary to the symbol mapping performed at the transmitter, and provides soft-decision symbols for transmitted coded bits. “Extrinsic information” in the soft-decision symbols is then decoded by the decoder to provide its extrinsic information, which comprises the a priori information used by the detector in the detection process. The detection and decoding may be iterated a number of times. The soft-decision symbols and the a priori information may be represented using log-likelihood ratios (LLRs).
    Type: Application
    Filed: March 15, 2005
    Publication date: July 21, 2005
    Inventors: Bjorn Bjerke, John Ketchum, Jay Walton