Patents by Inventor Jayant Kumar

Jayant Kumar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8349991
    Abstract: The present invention relates to amphiphilic polymers, and micelles and compositions comprising the same, and their use in a variety of biological settings, including imaging, targeting drugs, or a combination thereof for diagnostic and therapeutic purposes.
    Type: Grant
    Filed: April 17, 2006
    Date of Patent: January 8, 2013
    Assignees: Massachusetts Institute of Technology, University of Massachusetts Lowell
    Inventors: Clark K. Colton, Arthur Watterson, Rajesh Kumar, Virinder S. Parmar, Robert Fisher, Jayant Kumar
  • Publication number: 20120100583
    Abstract: The invention relates to new methods of enzymatic synthesis of polymers such as polyorganosilicones and polyesters, and new polymers made by these methods.
    Type: Application
    Filed: May 24, 2011
    Publication date: April 26, 2012
    Applicant: UNIVERSITY OF MASSACHUSETTS
    Inventors: Rajesh Kumar, Arthur C. Watterson, Virinder Singh Parmar, Jayant Kumar, Lynne Ann Samuelson
  • Patent number: 8143308
    Abstract: A method for synthesizing a biocompatible, water-soluble oligo/polyflavanoid, includes polymerizing an optionally substituted flavanoid with a polymerization agent in the presence of a biocompatible polymerization solubilizer, thereby producing the biocompatible, soluble oligo/polyflavanoid. Also included is a biocompatible, soluble, oligo/polyflavanoid or a pharmaceutically acceptable salt, solvate, or complex thereof. Also included are methods of treating a subject for cancer, cardiac damage, viral infection, and obesity.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: March 27, 2012
    Assignees: University of Massachusetts Lowell, The United States of America, as represented by the Secretary of the Army
    Inventors: Ferdinando F. Bruno, Jayant Kumar, Subhalakshmi Nagarajan, Susan J. Braunhut, Ramaswamy Nagarajan, Lynne A. Samuelson, Donna McIntosh, Klaudia Foley
  • Publication number: 20110136958
    Abstract: A polymer is characterized by a repeat unit represented by Structural Formula (I), or a copolymer thereof. A crosslinked polymer characterized by a repeat unit represented by Structural Formula (II), (III), (IV) or (V), or a copolymer thereof, wherein at least one such repeat unit of a first polymer strand is crosslinked with at least one repeat unit of a second polymer strand by at least one bridging unit, the first and second polymer strands and the repeat unit being components of the crosslinked polymer.
    Type: Application
    Filed: September 10, 2008
    Publication date: June 9, 2011
    Inventors: Arthur C. Watterson, Ravi Mosurkal, Jayant Kumar, Virinder S. Parmar, Lynne A. Samuelson, Rajesh Kumar, Vincent Tucci
  • Publication number: 20100310647
    Abstract: The invention relates to new methods of enzymatic synthesis of polymers such as polyorganosilicones and polyesters, and new polymers made by these methods.
    Type: Application
    Filed: May 5, 2010
    Publication date: December 9, 2010
    Applicant: UNIVERSITY OF MASSACHUSETTS
    Inventors: Rajesh Kumar, Arthur C. Watterson, Virinder Singh Parmar, Jayant Kumar, Lynne Ann Samuelson
  • Patent number: 7718112
    Abstract: Nanometer scale structures, and methods of making the same are disclosed.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: May 18, 2010
    Assignees: University of Massachusetts, The United States of America as Represented by the Secretary of the Army
    Inventors: Christopher Drew, Ferdinando Bruno, Lynne Ann Samuelson, Jayant Kumar
  • Patent number: 7601378
    Abstract: The following is an examiner's statement of reasons for allowance: an antioxidant polymer and method of preparing, the antioxidant comprising repeat units that include one or both of Structural Formulas (I) and (II) wherein R is —H or a substituted or unsubstituted alkyl, acyl or aryl group; Ring A is substituted with at least one tert-butyl group or substituted or unsubstituted n-alkoxycarbonyl group; Ring B is substituted with at least one —H and at least one tert-butyl group or substituted or unsubstituted n-alkoxycarbonyl group is not taught nor fairly suggested by the prior art or any combination thereof.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: October 13, 2009
    Assignees: University of Massachusetts Lowell, The United States of America as represented by the Secretary of the Army
    Inventors: Ashok L. Cholli, Vijayendra Kumar, Jayant Kumar, Virinder Singh Parmar, Lynne Ann Samuelson, Ferdinando F. Bruno
  • Patent number: 7595074
    Abstract: A method of preparing a phenolic polymer comprising: a) protecting at least one hydroxyl group of a substituted or unsubstituted phenol represented by Structural Formula (XXIX), wherein: R11, R12, R13, R14 and R15 are independently —H, —OH, —NH, —SH, a substituted or unsubstituted alkyl or aryl group, a substituted or unsubstituted alkoxycarbonyl or aryloxycarbonyl group, a substituted or unsubstituted alkoxy group or a saturated or unsaturated carboxylic acid group; or R11, R12, R13, R14 or R15, in conjunction with an adjacent R11, R12, R13, R14 or R15, forms a substituted or unsubstituted alkylene dioxy group; provided that at least one of R11, R12, R13, R14 or R15 is a tert-butyl group 1-ethenyl-2-carboxylic acid or ester thereof, a substituted or unsubstituted alkylene dioxy group or a substituted or unsubstituted n-alkoxycarbonyl group, at least one of R11, R12, R13, R14 or R15 is a hydroxyl group, and at least one of R11, R12, R13, R14 and R15 is —H; with a protecting group, wherein thereby obtaining on
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: September 29, 2009
    Assignees: University of Massachusetts Lowell, The United States of America as represented by the Secretary of the Army
    Inventors: Ashok L. Cholli, Vijayendra Kumar, Ashish Dhawan, Jayant Kumar, Virinder Singh Parmar, Lynne Ann Samuelson, Ferdinando F. Bruno
  • Publication number: 20090170928
    Abstract: A method for synthesizing a biocompatible, water-soluble oligo/polyflavanoid, includes polymerizing an optionally substituted flavanoid with a polymerization agent in the presence of a biocompatible polymerization solubilizer, thereby producing the biocompatible, soluble oligo/polyflavanoid. Also included is a biocompatible, soluble, oligo/polyflavanoid or a pharmaceutically acceptable salt, solvate, or complex thereof. Also included are methods of treating a subject for cancer, cardiac damage, viral infection, and obesity.
    Type: Application
    Filed: October 29, 2007
    Publication date: July 2, 2009
    Inventors: Ferdinando F. Bruno, Jayant Kumar, Subhalakshmi Nagarajan, Susan J. Braunhut, Ramaswamy Nagarajan, Lynne A. Samuelson, Donna McIntosh, Klaudia Foley
  • Publication number: 20090099267
    Abstract: Polymers having a main chain having both aromatic units and aliphatic units (with repeating heteroatoms) and a side chain macromonomer are described. Methods of making these polymers using enzymatic synthesis and the applications of these polymers are also described.
    Type: Application
    Filed: May 26, 2006
    Publication date: April 16, 2009
    Applicant: University of Massachusetts
    Inventors: Rajesh Kumar, Jayant Kumar, Virinder Singh Parmar, Arthur C. Watterson
  • Patent number: 7510739
    Abstract: An assembled hematin is formed by depositing hematin on an electrically charged substrate in one or more layers alternating with one or more layers of polyelectrolyte, preferably a cationic polymer. In a method for polymerizing an aromatic monomer, the assembled hematin is contacted with the monomer and a template, preferably an anionic polymer. In a method for polymerizing aniline, the aniline, sulfonated multi walled carbon nano tubes, PEG hematin and a reaction initiator are dispersed in water.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: March 31, 2009
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Ferdinando Bruno, Lynne A. Samuelson, Ramaswamy Nagarajan, Jayant Kumar, Michael Sennett
  • Patent number: 7507454
    Abstract: Antioxidant polymers of the present invention comprise repeat units that include one or both of Structural Formulas (I) and (II): wherein: R is —H or a substituted or unsubstituted alkyl, acyl or aryl group; Ring A is substituted with at least one tert-butyl group or substituted or unsubstituted n-alkoxycarbonyl group; Ring B is substituted with at least one —H and at least one tert-butyl group or substituted or unsubstituted n-alkoxycarbonyl group; Rings A and B are each optionally substituted with one or more groups selected from the group consisting of —OH, —NH, —SH, a substituted or unsubstituted alkyl or aryl group, and a substituted or unsubstituted alkoxycarbonyl group; n is an integer equal to or greater than 2; and p is an integer equal to or greater than 0. The invention also includes methods of using and preparing these polymers.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: March 24, 2009
    Assignees: University of Massachusetts Lowell, United States of America as represented by the Secretary of the Army
    Inventors: Ashok L. Cholli, Vijayendra Kumar, Jayant Kumar, Virinder Singh Parmar, Lynne Ann Samuelson, Ferdinando F. Bruno
  • Patent number: 7479329
    Abstract: Hematin, a hydroxyferriprotoporphyrin, is derivatized with one or more non-proteinaceous amphipathic groups. The derivatized hematin can serve as a mimic of horseradish peroxidase in polymerizing aromatic monomers, such as aromatic compounds. These derivatized hematins can also be used as catalysts in polymerizing aromatic monomers, and can exhibit significantly greater catalytic activity than underivatized hematin in acidic solutions. In one embodiment, polymerization is in the presence of a template, along which aromatic monomers align. An assembled hematin includes alternating layers of hematin and a polyelectrolyte, which are deposited on an electrically charged substrate. Assembled hematin can also be used to polymerize aromatic monomers.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: January 20, 2009
    Assignees: University of Massachusetts/Lowell, The United States of America as represented by the Secretary of the Army
    Inventors: Susan Tripathy, legal representative, Lynne A. Samuelson, Ferdinando F. Bruno, Sucharita Roy, Ramaswamy Nagarajan, Jayant Kumar, Bon-Cheol Ku, Soo-Hyoung Lee, Sukant Tripathy
  • Patent number: 7427414
    Abstract: Once a day modified release oral dosage form comprising of granules or pellets which are either compressed into tablet or filled inside the capsule, wherein the pellet has a core of active ingredient coated on non pareil seeds with a rate controlling functional coating of co-polymer of polyvinyl acetate optionally with an intermediate separating coating between the core and the functional coating layer.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: September 23, 2008
    Assignee: Astron Research Limited
    Inventors: Shashank Bababhai Patel, Kamala Sultansingh Yadav, Jayant Kumar Mandal, Kirti Bansidhar Maheshwari
  • Publication number: 20080090103
    Abstract: Hematin, a hydroxyferriprotoporphyrin, is derivatized with one or more non-proteinaceous amphipathic groups. The derivatized hematin can serve as a mimic of horseradish peroxidase in polymerizing aromatic monomers, such as aromatic compounds. These derivatized hematins can also be used as catalysts in polymerizing aromatic monomers, and can exhibit significantly greater catalytic activity than underivatized hematin in acidic solutions. In one embodiment, polymerization is in the presence of a template, along which aromatic monomers align. An assembled hematin includes alternating layers of hematin and a polyelectrolyte, which are deposited on an electrically charged substrate. Assembled hematin can also be used to polymerize aromatic monomers.
    Type: Application
    Filed: September 26, 2007
    Publication date: April 17, 2008
    Applicants: University of Massachusetts Lowell, Government of the United States, as Represented by the Secretary of the Army
    Inventors: Sukant Tripathy, Susan Tripathy, Lynne Samuelson, Ferdinando Bruno, Sucharita Roy, Ramaswamy Nagarajan, Jayant Kumar, Bon-Cheol Ku, Soo-Hyoung Lee
  • Patent number: 7358327
    Abstract: An assembled hematin is formed by depositing hematin on an electrically charged substrate in one or more layers alternating with one or more layers of polyelectrolyte, preferably a cationic polymer. In a method for polymerizing an aromatic monomer, the assembled hematin is contacted with the monomer and a template, preferably an anionic polymer. In a method for polymerizing aniline, the aniline, sulfonated multi walled carbon nano tubes, PEG hematin and a reaction initiator are dispersed in water.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: April 15, 2008
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Ferdinando Bruno, Lynne A. Samuelson, Ramaswamy Nagarajan, Jayant Kumar, Michael Sennett
  • Patent number: 7344751
    Abstract: An assembled hematin is formed by depositing hematin on an electrically charged substrate in one or more layers alternating with one or more layers of polyelectrolyte, preferably a cationic polymer. In a method for polymerizing an aromatic monomer, the assembled hematin is contacted with the monomer and a template, preferably an anionic polymer. In a method for polymerizing aniline, the aniline, sulfonated multi walled carbon nano tubes, PEG hematin and a reaction initiator are dispersed in water.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: March 18, 2008
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Ferdinando Bruno, Lynne A. Samuelson, Ramaswamy Nagarajan, Jayant Kumar, Michael Sennett
  • Patent number: 7332297
    Abstract: The invention relates to a novel method for enzymatic polymerization which includes (1) obtaining a reaction mixture including a monomer, a template, and an enzyme; and (2) incubating the reaction mixture for a time and under conditions sufficient for the monomer to align along the template and polymerize to form a polymer-template complex. The template can be a micelle, a borate-containing electrolyte, or lignin sulfonate. Such a complex possesses exceptional electrical and optical stability, water solubility, and processibility, and can be used in applications such as light-weight energy storage devices (e.g., rechargeable batteries), electrolytic capacitors, anti-static and anti-corrosive coatings for smart windows, and biological sensors.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: February 19, 2008
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Lynne A. Samuelson, Ferdinando Bruno, Susan Tripathy, legal representative, Ramaswamy Nagarajan, Jayant Kumar, Wei Liu, Sukant K. Tripathy
  • Patent number: 7323635
    Abstract: A method of making a photovoltaic cell includes contacting a cross-linking agent with semiconductor particles, and incorporating the semiconductor particles into the photovoltaic cell.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: January 29, 2008
    Assignees: University of Massachusetts, The United States of America as represented by the Secretary of the Army
    Inventors: Kethinni G. Chittibabu, Jin-An He, Lynne Ann Samuelson, Lian Li, Susan Tripathy, legal representative, Jayant Kumar, Srinivasan Balasubramanian, Sukant Tripathy, deceased
  • Patent number: 7309582
    Abstract: The invention relates to a novel method for enzymatic polymerization which includes (1) obtaining a reaction mixture including a monomer, a template, and an enzyme; and (2) incubating the reaction mixture for a time and under conditions sufficient for the monomer to align along the template and polymerize to form a polymer-template complex. The template can be a micelle, a borate-containing electrolyte, or lignin sulfonate. Such a complex possesses exceptional electrical and optical stability, water solubility, and processibility, and can be used in applications such as light-weight energy storage devices (e.g., rechargeable batteries), electrolytic capacitors, anti-static and anti-corrosive coatings for smart windows, and biological sensors.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: December 18, 2007
    Assignee: United States of America as represented by the Secretary of the Army
    Inventors: Lynne A. Samuelson, Ferdinando Bruno, Susan Tripathy, legal representative, Ramaswamy Nagarajan, Jayant Kumar, Wei Liu, Sukant K. Tripathy, deceased