Patents by Inventor Jea-Chun Jeon

Jea-Chun Jeon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230014632
    Abstract: The present embodiments relate to a cold-rolled steel sheet for a flux-cored wire and a method for manufacturing the same. According to an exemplary embodiment, a cold-rolled steel sheet for a flux-cored wire, including: by wt %, 0.0005 to 0.01% of carbon (C), 0.05 to 0.25% of manganese (Mn), 0.03% or less (except for 0%) of silicon (Si), 0.0005 to 0.01% of phosphorus (P), 0.001 to 0.008% of sulfur (S), 0.0001 to 0.010% of aluminum (Al), 0.0005 to 0.003% of nitrogen (N), 0.5 to 1.7% of nickel (Ni), 0.0005 to 0.0030% of boron (B), and the balance Fe and inevitable impurities, can be provided.
    Type: Application
    Filed: December 16, 2020
    Publication date: January 19, 2023
    Applicant: POSCO
    Inventors: Jai-Ik KIM, Jea-Chun JEON
  • Publication number: 20230002869
    Abstract: The present invention provides a tin blackplate for processing and a method for manufacturing the same. The tin blackplate according to an exemplary embodiment of the present invention comprises: in % by weight, 0.0005 to 0.005% of carbon (C), 0.15 to 0.60% of manganese (Mn), 0.01 to 0.06% of aluminum (AI), 0.0005 to 0.004% of nitrogen (N), 0.0005 to 0.003% of boron (B), 0.01 to 0.035% of titanium (Ti), and the balance being iron (Fe) and inevitable impurities, and satisfies the following Formula 1. 4.8?([Ti]+[Al])/[N]?[B]?12.5??[Equation 1] In this case, in Equation 1, [Ti], [Al], [N], and [B] mean each value obtained by dividing the content (% by weight) of Ti, Al, N, and B in the blackplate by each atomic weight thereof.
    Type: Application
    Filed: December 16, 2020
    Publication date: January 5, 2023
    Applicant: POSCO
    Inventors: Jai-Ik Kim, Jea-Chun Jeon
  • Patent number: 9856550
    Abstract: The present invention relates to a high carbon hot rolled steel sheet having excellent material uniformity and a method for manufacturing the same, in which components and structure of the steel are precisely controlled and manufacturing conditions are adjusted to achieve excellence in material uniformity among hot rolled structures, thereby improving the dimensional precision of parts after formation, preventing defects during processing, and obtaining uniform structures and hardness distribution even after a final heat treatment process.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: January 2, 2018
    Assignee: POSCO
    Inventors: Young-Roc Im, Jea-Chun Jeon, Byoung-Ho Lee
  • Publication number: 20150107725
    Abstract: The present invention relates to a high carbon hot rolled steel sheet having excellent material uniformity and a method for manufacturing the same, in which components and structure of the steel are precisely controlled and manufacturing conditions are adjusted to achieve excellence in material uniformity among hot rolled structures, thereby improving the dimensional precision of parts after formation, preventing defects during processing, and obtaining uniform structures and hardness distribution even after a final heat treatment process.
    Type: Application
    Filed: December 27, 2012
    Publication date: April 23, 2015
    Inventors: Young-Roc Im, Jea-Chun Jeon, Byoung-Ho Lee
  • Patent number: 8685181
    Abstract: A carbon steel sheet having high formability due to a microscopic and uniform carbide distribution and having a good characteristic of final heat treatment, and a manufacturing method thereof. The carbon steel sheet having excellent formability includes, in wt %, C at 0.2-0.5%, Mn at 0.1-1.2%, Si at less than or equal to 0.4%, Cr at less than or equal to 0.5%, Al at 0.01-0.1%, S at less than or equal to 0.012%, Ti at less than or equal to 0.5×48/14×[N]% to 0.03% when the condition of B and N is not satisfied, B at 0.0005-0.0080%, N at less than or equal to 0.006%, Fe, and extra inevitable elements; an average size of carbide is less than or equal to 1 ?m; and an average grain size of ferrite is less than or equal to 5 ?m.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: April 1, 2014
    Assignee: Posco
    Inventors: Kyoo-Young Lee, Gyo-Sung Kim, Han-Chul Shin, Chang-Hoon Lee, Kee-Cheol Park, Jea-Chun Jeon
  • Patent number: 8440030
    Abstract: A method for manufacturing a fine spheroidized steel sheet having an excellent heat treatment characteristic, the method including: i) manufacturing a high carbon slab that is formed of 0.3 to 1.0 wt % C, 0.1 to 1.2 wt % Mn, 0 to 0.4 wt % Si, 0.01 to 0.1 wt % Al, 0 to 0.01 wt % S, and balance Fe and an inevitably added impurity as residuals; ii) reheating the slab to a temperature of Ar3 transformation point or more; iii) roughing rolling the slab, and manufacturing a thin plate by performing finish rolling in an austenite region; iv) cooling the thin plate at a cooling speed of 50 to 300° C./sec; v) finishing the cooling of the thin plate at a temperature region of 400 to 650° C. and maintaining the temperature; vi) winding the thin plate at a temperature region of 450 to 700° C.; vii) performing cold rolling at a reduction ratio of 30% or more; and viii) spheroidizing annealing the cold rolled thin plate.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: May 14, 2013
    Assignee: POSCO
    Inventors: Chang-Hoon Lee, Jea-Chun Jeon, Jong-Sub Lee, Ki-Soo Kim
  • Publication number: 20120222786
    Abstract: A carbon steel sheet having high formability due to a microscopic and uniform carbide distribution and having a good characteristic of final heat treatment, and a manufacturing method thereof. The carbon steel sheet having excellent formability includes, in wt %, C at 0.2-0.5%, Mn at 0.1-1.2%, Si at less than or equal to 0.4%, Cr at less than or equal to 0.5%, Al at 0.01-0.1%, S at less than or equal to 0.012%, Ti at less than or equal to 0.5×48/14×[N] % to 0.03% when the condition of B and N is not satisfied, B at 0.0005-0.0080%, N at less than or equal to 0.006%, Fe, and extra inevitable elements; an average size of carbide is less than or equal to 1 ?m; and an average grain size of ferrite is less than or equal to 5 ?m.
    Type: Application
    Filed: May 15, 2012
    Publication date: September 6, 2012
    Applicant: POSCO
    Inventors: Kyoo-Young Lee, Gyo-Sung Kim, Han-Chul Shin, Chang-Hoon Lee, Kee-Cheol Park, Jea-Chun Jeon
  • Publication number: 20110259483
    Abstract: A method for manufacturing a fine spheroidized steel sheet having an excellent heat treatment characteristic, the method including: i) manufacturing a high carbon slab that is formed of 0.3 to 1.0 wt % C, 0.1 to 1.2 wt % Mn, 0 to 0.4 wt % Si, 0.01 to 0.1 wt % Al, 0 to 0.01 wt % S, and balance Fe and an inevitably added impurity as residuals; ii) reheating the slab to a temperature of Ar3 transformation point or more; iii) roughing rolling the slab, and manufacturing a thin plate by performing finish rolling in an austenite region; iv) cooling the thin plate at a cooling speed of 50 to 300° C./sec; v) finishing the cooling of the thin plate at a temperature region of 400 to 650° C. and maintaining the temperature; vi) winding the thin plate at a temperature region of 450 to 700° C.; vii) performing cold rolling at a reduction ratio of 30% or more; and viii) spheroidizing annealing the cold rolled thin plate.
    Type: Application
    Filed: December 21, 2009
    Publication date: October 27, 2011
    Applicant: POSCO
    Inventors: Chang-Hoon Lee, Jea-Chun Jeon, Jong-Sub Lee, Ki-Soo Kim
  • Publication number: 20080295923
    Abstract: A carbon steel sheet having high formability due to a microscopic and uniform carbide distribution and having a good characteristic of final heat treatment, and a manufacturing method thereof. The carbon steel sheet having excellent formability, includes, in wt %, C at 0.2-0.5%, Mn at 0.1-1.2%, Si at less than or equal to 0.4%, Cr at less than or equal to 0.5%, Al at 0.01-0.1%, S at less than or equal to 0.012%, Ti at less than or equal to 0.5×48/14×[N]% when the condition of B(atomic %)/N(atomic %)>1 is satisfied or by 0.5×48/14×[N]% to 0.03% when the condition of B and N is not satisfied, B at 0.0005-0.0080%, N at less than or equal to 0.006%, Fe, and extra inevitable elements; an average size of carbide is less than or equal to 1 ?m; and an average grain size of ferrite is less than or equal to 5 ?m.
    Type: Application
    Filed: December 26, 2006
    Publication date: December 4, 2008
    Applicant: POSCO
    Inventors: Kyoo-Young Lee, Gyo-Sung Kim, Han-Chul Shin, Chang-Hoon Lee, Kee-Cheol Park, Jea-Chun Jeon