Patents by Inventor Jeah Sheng Wu

Jeah Sheng Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11953770
    Abstract: The invention relates to a display device having an integrated, optically operating proximity sensor system (76) for detecting an object present within an observation space in front of the display device, such as a hand or a finger of a hand of a person. The display device is provided with a display unit (11) which has a front side (60) having an information-displaying display surface (62) and having an edge region (64), which adjoins said display surface and is not used for the display of information, and a rear side. The display device also has a proximity sensor system (76) having at least one transmitter (78) for emitting sensor radiation towards the observation space and having at least one receiver (74) for receiving sensor radiation reflected from the observation space.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: April 9, 2024
    Assignee: BEHR-HELLA THERMOCONTROL GMBH
    Inventors: Alberto Sanchez Castillo, Tobias Schwab, Willem Hofman, Jeah-Sheng Wu, RĂ¼diger Schmidt
  • Publication number: 20220390784
    Abstract: The invention relates to a display device having an integrated, optically operating proximity sensor system (76) for detecting an object present within an observation space in front of the display device, such as a hand or a finger of a hand of a person. The display device is provided with a display unit (11) which has a front side (60) having an information-displaying display surface (62) and having an edge region (64), which adjoins said display surface and is not used for the display of information, and a rear side. The display device also has a proximity sensor system (76) having at least one transmitter (78) for emitting sensor radiation towards the observation space and having at least one receiver (74) for receiving sensor radiation reflected from the observation space.
    Type: Application
    Filed: September 21, 2020
    Publication date: December 8, 2022
    Applicant: BEHR-HELLA THERMOCONTROL GMBH
    Inventors: Alberto SANCHEZ CASTILLO, Tobias SCHWAB, Willem HOFMAN, Jeah-Sheng WU, RĂ¼diger SCHMIDT
  • Patent number: 8889215
    Abstract: The present disclosure relates to a method for making a plurality of touch panels one time. The method includes following steps. A substrate is provided. The substrate has a surface defining a number of target areas with each including two areas: a touch-view area and a trace area. An adhesive layer is formed on the surface of the substrate. A carbon nanotube film is formed on the adhesive layer. The adhesive layer is solidified. An electrode and a conductive trace are formed on each target area so that part of the carbon nanotube film is exposed from a space between adjacent conductive lines of the conductive trace to form an exposed carbon nanotube film on each trace area. The exposed carbon nanotube film on each trace area is removed to obtain a plurality of transparent conductive layers spaced from each other. A number of touch panels is obtained by cutting the substrate.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: November 18, 2014
    Assignee: Shih Hua Technology Ltd.
    Inventors: Jia-Shyong Cheng, Hung-Yi Hung, Jeah-Sheng Wu
  • Patent number: 8883248
    Abstract: The present disclosure relates to a method for making a touch panel. The method includes following steps. A substrate is provided, wherein the substrate has a surface and defines two areas: a touch-view area and a trace area; applying an adhesive layer on the surface of the substrate. A carbon nanotube film is placed on a surface of the adhesive layer. The adhesive layer is solidified. An electrode and a conductive trace are formed on a surface of the carbon nanotube film so that part of the carbon nanotube film on the trace area is exposed from space between adjacent conductive lines of the conductive trace to form an exposed carbon nanotube film. The exposed carbon nanotube film is removed.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: November 11, 2014
    Assignee: Shih Hua Technology Ltd.
    Inventors: Jia-Shyong Cheng, Hung-Yi Hung, Jeah-Sheng Wu
  • Patent number: 8871293
    Abstract: The present disclosure relates to a method for making touch panel. A substrate having a surface is provided. The substrate defines two areas: a touch-view area and a trace area. An adhesive layer is formed on the surface of the substrate. The adhesive layer on the trace area is solidified. A carbon nanotube layer is formed on the adhesive layer. The adhesive layer on the touch-view area is solidified. The carbon nanotube layer on the trace area is removed. At least one electrode and a conductive trace is formed.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: October 28, 2014
    Assignee: Shih Hua Technology Ltd.
    Inventors: Jia-Shyong Cheng, Po-Shan Huang, Po-Sheng Shih, Chun-Yi Hu, Chih-Han Chao, Jeah-Sheng Wu
  • Patent number: 8822829
    Abstract: A patterned conductive element includes a substrate having a surface, an adhesive layer located on the surface, and a patterned carbon nanotube layer located on the adhesive layer. Part of the patterned carbon nanotube layer is embedded in the adhesive layer, and the other part of the patterned carbon nanotube layer is exposed from the adhesive layer.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: September 2, 2014
    Assignee: Shih Hua Technology Ltd.
    Inventors: Jia-Shyong Cheng, Po-Shan Huang, Po-Sheng Shih, Chun-Yi Hu, Chih-Han Chao, Jeah-Sheng Wu
  • Publication number: 20140124244
    Abstract: A method for making a conductive film exhibiting electric anisotropy comprises forming a nanomaterial on a substrate, the nanomaterial having a cluster of interconnected nanounits, each of which being substantially transverse to the substrate and having one end bonded to the substrate. The method further includes stretching the nanounits along a first direction to remove the nanomaterial from the substrate so as to form a conductive film having strings of interconnected nanounits, where the nanounits of the strings substantially extend in the first direction. A conductive plate and a method for making the same is also disclosed, where the method further comprises attaching the conductive film to a second substrate.
    Type: Application
    Filed: January 10, 2014
    Publication date: May 8, 2014
    Applicant: INNOLUX CORPORATION
    Inventors: JEAH-SHENG WU, JIA-SHYONG CHENG, CHIH-HAN CHAO
  • Patent number: 8646175
    Abstract: A method for making a conductive film exhibiting electric anisotropy comprises forming a nanomaterial on a substrate, the nanomaterial having a cluster of interconnected nanounits, each of which being substantially transverse to the substrate and having one end bonded to the substrate. The method further includes stretching the nanounits along a first direction to remove the nanomaterial from the substrate so as to form a conductive film having strings of interconnected nanounits, where the nanounits of the strings substantially extend in the first direction. A conductive plate and a method for making the same is also disclosed, where the method further comprises attaching the conductive film to a second substrate.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: February 11, 2014
    Assignee: Chimei Innolux Corporation
    Inventors: Jeah-Sheng Wu, Jia-Shyong Cheng, Chih-Han Chao
  • Patent number: 8623224
    Abstract: The present disclosure relates to a method for making pattern conductive element. The method includes steps. A substrate having a surface is provide. An adhesive layer is formed on the surface of the substrate. Part of the adhesive layer is solidified to form a solidified adhesive layer and a non-solidified adhesive layer. A carbon nanotube layer is applied on the adhesive layer. The non-solidified adhesive layer is solidified so that the carbon nanotube layer on the non-solidified adhesive layer forms a fixed carbon nanotube layer and the carbon nanotube layer on the solidified adhesive layer forms a non-fixed carbon nanotube layer. The non-fixed carbon nanotube layer is removed and the fixed carbon nanotube layer is remained to form a pattern carbon nanotube layer.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: January 7, 2014
    Assignee: Shih Hua Technology Ltd.
    Inventors: Jia-Shyong Cheng, Po-Shan Huang, Po-Sheng Shih, Chun-Yi Hu, Chih-Han Chao, Jeah-Sheng Wu
  • Patent number: 8487193
    Abstract: A conductive plate includes a substrate, an adhesive, and a conductive layer attached to the substrate through the adhesive. The conductive layer includes a plurality of conductive films, each of which includes a plurality of nanounits.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: July 16, 2013
    Assignee: Chimei Innolux Corporation
    Inventors: Chih-Chieh Chang, Jeah-Sheng Wu, Chih-Han Chao
  • Patent number: 8411052
    Abstract: A touch panel includes a first electrode plate and a second electrode plate spaced from the first electrode plate. The first electrode plate includes a first substrate, a plurality of first transparent electrodes, and a plurality of first signal wires. The second electrode plate includes a second substrate, a plurality of second transparent electrodes, and a plurality of second signal wires. Both the second transparent electrode and the first transparent electrode include a transparent carbon nanotube structure, the carbon nanotube structure includes of a plurality of metallic carbon nanotubes.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: April 2, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Liang Liu, Shou-Shan Fan, Ga-Lane Chen, Jia-Shyong Cheng, Jeah-Sheng Wu
  • Patent number: 8411051
    Abstract: A liquid crystal display screen includes an upper board, a lower board opposite to the upper board, and a liquid crystal layer located between the upper board and the lower board. The upper board includes a touch panel. The touch panel includes a plurality of transparent electrodes. At least one of the transparent electrodes includes a carbon nanotube structure.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: April 2, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Liang Liu, Shou-Shan Fan, Ga-Lane Chen, Jia-Shyong Cheng, Jeah-Sheng Wu
  • Patent number: 8390580
    Abstract: A liquid crystal display screen includes an upper board, a lower board opposite to the upper board, and a liquid crystal layer located between the upper board and the lower board. The upper board includes a touch panel. The touch panel includes an amount of transparent electrodes. At least one of the transparent electrodes includes a transparent carbon nanotube structure. The lower board includes a thin film transistor panel. The thin film transistor panel includes an amount of thin film transistors. Each of the thin film transistors includes a semiconducting layer. The semiconducting layer includes a semiconducting carbon nanotube structure.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: March 5, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Liang Liu, Shou-Shan Fan, Ga-Lane Chen, Jia-Shyong Cheng, Jeah-Sheng Wu
  • Patent number: 8350727
    Abstract: A touch panel comprises: a first conductive plate including a first substrate having a surface, a first conductive layer disposed on the surface of the first substrate and exhibiting an anisotropic resistivity, and at least one conductive first connecting line, the surface of the first substrate having a peripheral edge, a sensing region covered by the first conductive layer, and a marginal region extending from the sensing region to the peripheral edge, the first connecting line being disposed on the marginal region; and a second conductive plate including a second substrate and a second conductive layer disposed on the second substrate, facing the first conductive layer, and exhibiting anisotropic resistivity. An electronic device including the touch panel is also disclosed.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: January 8, 2013
    Assignee: Chimei Innolux Corporation
    Inventors: Jia-Shyong Cheng, Jeah-Sheng Wu, Chun-Yi Hu, Chih-Han Chao
  • Publication number: 20120312587
    Abstract: A patterned conductive element includes a substrate having a surface, an adhesive layer located on the surface, and a patterned carbon nanotube layer located on the adhesive layer. Part of the patterned carbon nanotube layer is embedded in the adhesive layer, and the other part of the patterned carbon nanotube layer is exposed from the adhesive layer.
    Type: Application
    Filed: December 29, 2011
    Publication date: December 13, 2012
    Applicant: SHIH HUA TECHNOLOGY LTD.
    Inventors: JIA-SHYONG CHENG, PO-SHAN HUANG, PO-SHENG SHIH, CHUN-YI HU, CHIH-HAN CHAO, JEAH-SHENG WU
  • Publication number: 20120312777
    Abstract: The present disclosure relates to a method for making a touch panel. The method includes following steps. A substrate is provided, wherein the substrate has a surface and defines two areas: a touch-view area and a trace area; applying an adhesive layer on the surface of the substrate. A carbon nanotube film is placed on a surface of the adhesive layer. The adhesive layer is solidified. An electrode and a conductive trace are formed on a surface of the carbon nanotube film so that part of the carbon nanotube film on the trace area is exposed from space between adjacent conductive lines of the conductive trace to form an exposed carbon nanotube film. The exposed carbon nanotube film is removed.
    Type: Application
    Filed: December 29, 2011
    Publication date: December 13, 2012
    Applicant: Shih Hua Technology Ltd.
    Inventors: JIA-SHYONG CHENG, HUNG-YI HUNG, JEAH-SHENG WU
  • Publication number: 20120312771
    Abstract: The present disclosure relates to a method for making touch panel. A substrate having a surface is provided. The substrate defines two areas: a touch-view area and a trace area. An adhesive layer is formed on the surface of the substrate. The adhesive layer on the trace area is solidified. A carbon nanotube layer is formed on the adhesive layer. The adhesive layer on the touch-view area is solidified. The carbon nanotube layer on the trace area is removed. At least one electrode and a conductive trace is formed.
    Type: Application
    Filed: December 29, 2011
    Publication date: December 13, 2012
    Applicant: SHIH HUA TECHNOLOGY LTD.
    Inventors: JIA-SHYONG CHENG, PO-SHAN HUANG, PO-SHENG SHIH, CHUN-YI HU, CHIH-HAN CHAO, JEAH-SHENG WU
  • Publication number: 20120312772
    Abstract: The present disclosure relates to a method for making a plurality of touch panels one time. The method includes following steps. A substrate is provided. The substrate has a surface defining a number of target areas with each including two areas: a touch-view area and a trace area. An adhesive layer is formed on the surface of the substrate. A carbon nanotube film is formed on the adhesive layer. The adhesive layer is solidified. An electrode and a conductive trace are formed on each target area so that part of the carbon nanotube film is exposed from a space between adjacent conductive lines of the conductive trace to form an exposed carbon nanotube film on each trace area. The exposed carbon nanotube film on each trace area is removed to obtain a plurality of transparent conductive layers spaced from each other. A number of touch panels is obtained by cutting the substrate.
    Type: Application
    Filed: December 29, 2011
    Publication date: December 13, 2012
    Applicant: SHIH HUA TECHNOLOGY LTD.
    Inventors: JIA-SHYONG CHENG, HUNG-YI HUNG, JEAH-SHENG WU
  • Publication number: 20120313864
    Abstract: The present disclosure relates to a touch panel. The touch panel includes a substrate having a surface, a transparent conductive layer, at least one electrode, and a conductive trace. The substrate defines a touch-view area and a trace area. The transparent conductive layer is located on the surface of the substrate and on only the touch-view area. The transparent conductive layer includes a carbon nanotube film. The at least one electrode is electrically connected with the transparent conductive layer. The conductive trace is located on only the trace area and electrically connected with the at least one electrode.
    Type: Application
    Filed: December 29, 2011
    Publication date: December 13, 2012
    Applicant: SHIH HUA TECHNOLOGY LTD.
    Inventors: JIA-SHYONG CHENG, PO-SHAN HUANG, PO-SHENG SHIH, CHUN-YI HU, CHIH-HAN CHAO, JEAH-SHENG WU
  • Publication number: 20120312776
    Abstract: A method for making a plurality of touch panels one time which includes the following steps. A substrate is provided. The substrate has a surface defining a plurality of target areas with each including a touch-view area and a trace area. An adhesive layer is formed on the surface of the substrate. The adhesive layer on the trace areas is solidified. A carbon nanotube layer is formed on the adhesive layer. The adhesive layer on the touch-view area is solidified. The carbon nanotube layer on the trace areas is removed to obtain a plurality of transparent conductive layers spaced from each other. An electrode and a conductive trace are formed on each target area. A plurality of touch panels is obtained by cutting the substrate.
    Type: Application
    Filed: December 29, 2011
    Publication date: December 13, 2012
    Applicant: SHIH HUA TECHNOLOGY LTD.
    Inventors: JIA-SHYONG CHENG, PO-SHAN HUANG, PO-SHENG SHIH, CHUN-YI HU, CHIH-HAN CHAO, JEAH-SHENG WU