Patents by Inventor Jean-Max Millon Sainte-Claire

Jean-Max Millon Sainte-Claire has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9945484
    Abstract: A seal strip (60A, 60B, 60C, 60F, 60G, 60H, 60J) with an imperforate width-spanning portion (64) first and second rounded edges (65, 66) and one or more strip-thickening elements (67, 68, 74, 76, 82, 84, 90, 91) between the rounded edges. The strip-thickening elements may have transverse slots (80, 86, 88, 93L, 93R, 72, 78) for increased flexibility of the strip. The strip-thickening elements may also have perforations (92) or gaps (69) to admit coolant and/or to reduce weight. Folded embodiments (60A, 60B) may have dimples (70) on the width-spanning portion (64) to limit bending of the folded portions (67, 68, 74, 76). The seal may be slidably mounted in opposed slots (58A, 58B) in respective adjacent turbine components (54A, 54B), filling a width (W) of the slots, and a side of the seal may be cooled by compressed air (48).
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: April 17, 2018
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Frank Moehrle, Andrew R. Narcus, John Carella, Jean-Max Millon Sainte-Claire
  • Patent number: 9879555
    Abstract: Respective seals (54, 78) for the upper and lower spans (48A, 48B) of an exit frame (48) of a turbine combustion system transition piece (28). Each seal has a first strip (55, 79) and a second strip (66, 88) of a sealing material. The two strips of each seal are attached together along a common edge. The second strip is flexible, generally parallel to the first strip, and has a bead (72, 90) along its free edge. This forms a spring clamp that clamps a rail (68, 86) of the exit frame between the bead and the first strip of each seal. A tab extends axially aft from the first strip of each seal for insertion into a circumferential slot (58, 82) in a turbine inlet support structure (52, 76), thus sealing the transition piece (46) to the turbine inlet for efficient turbine operation.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: January 30, 2018
    Assignee: Siemens Energy, Inc.
    Inventors: Frank Moehrle, Andrew R. Narcus, John Carella, Jean-Max Millon Sainte-Claire
  • Patent number: 8562000
    Abstract: A seal strip (54) with a central relatively thin portion (68) and first and second thicker side portions (70, 72) that may be wedge-shaped adjacent the central portion. Each side portion may be formed of a linear array of base-in prisms (56), where each prism includes a base adjacent and normal to the central portion, and a thickness tapering distally toward an adjacent edge of the seal strip. The base-in prisms of each side portion may be separated by transverse slots (55) along the length of the strip. The transverse slots of the first side portion may be unaligned with the transverse slots of the second side portion along the length of the strip. A retention pin (58) may extend normally from an end of the seal strip. The seal strip may be mounted in tapered slots (49) of a gas turbine transition exit frame (48).
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: October 22, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: Frank Moehrle, Andrew R. Narcus, John Carella, Jean-Max Millon Sainte-Claire
  • Publication number: 20120292862
    Abstract: A seal strip (60A, 60B, 60C, 60F, 60G, 60H, 60J) with an imperforate width-spanning portion (64) first and second rounded edges (65, 66) and one or more strip-thickening elements (67, 68, 74, 76, 82, 84, 90, 91) between the rounded edges. The strip-thickening elements may have transverse slots (80, 86, 88, 93, 93R, 72, 78) for increased flexibility of the strip. The strip-thickening elements may also have perforations (92) or gaps (69) to admit coolant and/or to reduce weight. Folded embodiments (60A, 60B) may have dimples (70) on the width-spanning portion (64) to limit bending of the folded portions (67, 68, 74, 76). The seal may be slidably mounted in opposed slots (58A, 58B) in respective adjacent turbine components (54A, 54B), filling a width (W) of the slots, and a side of the seal may be cooled by compressed air (48).
    Type: Application
    Filed: October 19, 2011
    Publication date: November 22, 2012
    Inventors: Frank Moehrle, Andrew R. Narcus, John Carella, Jean-Max Millon Sainte-Claire
  • Publication number: 20120292860
    Abstract: Respective seals (54, 78) for the upper and lower spans (48A, 48B) of an exit frame (48) of a turbine combustion system transition piece (28). Each seal has a first strip (55, 79) and a second strip (66, 88) of a sealing material. The two strips of each seal are attached together along a common edge. The second strip is flexible, generally parallel to the first strip, and has a bead (72, 90) along its free edge. This forms a spring clamp that clamps a rail (68, 86) of the exit frame between the bead and the first strip of each seal. A tab extends axially aft from the first strip of each seal for insertion into a circumferential slot (58, 82) in a turbine inlet support structure (52, 76), thus sealing the transition piece (46) to the turbine inlet for efficient turbine operation.
    Type: Application
    Filed: October 24, 2011
    Publication date: November 22, 2012
    Inventors: FRANK MOEHRLE, Andrew R. Narcus, John Carella, Jean-Max Millon Sainte-Claire
  • Publication number: 20120292861
    Abstract: A seal strip (54) with a central relatively thin portion (68) and first and second thicker side portions (70, 72) that may be wedge-shaped adjacent the central portion. Each side portion may be formed of a linear array of base-in prisms (56), where each prism includes a base adjacent and normal to the central portion, and a thickness tapering distally toward an adjacent edge of the seal strip. The base-in prisms of each side portion may be separated by transverse slots (55) along the length of the strip. The transverse slots of the first side portion may be unaligned with the transverse slots of the second side portion along the length of the strip. A retention pin (58) may extend normally from an end of the seal strip. The seal strip may be mounted in tapered slots (49) of a gas turbine transition exit frame (48).
    Type: Application
    Filed: October 19, 2011
    Publication date: November 22, 2012
    Inventors: FRANK MOEHRLE, Andrew R. Narcus, John Carella, Jean-Max Millon Sainte-Claire