Patents by Inventor Jean-Michel Haillot

Jean-Michel Haillot has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10428739
    Abstract: A main power unit implements an optimization method in an aircraft including energy-consuming equipments, a cabin in which air is renewed and temperature and/or pressure of which are regulated by a regulation system, main power-generating engines, and a flight control unit. The main power unit is built into a compartment which is insulated from other zones of the aircraft with a fireproof bulkhead and fitted with an outside-air intake and an exhaust nozzle. The main power unit includes an engine-type power unit as a main power source, fitted with a gas generator and with a power turbine for driving equipments including a supercharger. The supercharger is coupled, via a regulation control which communicates with the control unit, with the regulation system in order to supply a necessary pneumatic energy to the cabin.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: October 1, 2019
    Assignee: SAFRAN HELICOPTER ENGINES
    Inventor: Jean-Michel Haillot
  • Patent number: 9555752
    Abstract: A chain of components for transmitting electric power of an aircraft includes an auxiliary power unit (APU), main engines and end consumer systems via power networks and electronic connections controlled by a unit. The APU supplies power to a shaft by a connection to at least one energy converter unit, via a transmission unit, each converter unit comprising only one convertible electromechanical component. The transmission of power is effected by a direct connection to the transmission unit and to the end consumer system. The connection between a converter unit and the APU is provided by connecting the shaft of the APU to the shaft of the starter/generator (SG) via a directional transmission of power operating in one direction only from the shaft of the APU to the shaft of the SG.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: January 31, 2017
    Assignee: TURBOMECA
    Inventor: Jean-Michel Haillot
  • Patent number: 9500137
    Abstract: A method optimizing fuel-injection control with driving speeds of apparatuses adjusted by controlling a turbine speed according to power, and optimizing control of a free turbine power package of an aircraft, including a low-pressure body, supplying power to apparatuses and linked to a high-pressure body. The method varies the low-pressure body speed to obtain a minimum speed for the high-pressure body, so power supplied by the apparatuses remains constant. Power supplied by the apparatuses is dependent upon the apparatuses driven speed by the low-pressure body, and a speed set point of the low-pressure body is dependent upon a maximum value of minimum speeds of the apparatuses, enabling required power to be optimized, upon a positive or zero incrementation added to the speed set point of the low-pressure body to minimize speed of the high-pressure body to the apparatuses power supply.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: November 22, 2016
    Assignee: TURBOMECA
    Inventor: Jean-Michel Haillot
  • Publication number: 20160281608
    Abstract: A main power unit implements an optimization method in an aircraft including energy-consuming equipments, a cabin in which air is renewed and temperature and/or pressure of which are regulated by a regulation system, main power-generating engines, and a flight control unit. The main power unit is built into a compartment which is insulated from other zones of the aircraft with a fireproof bulkhead and fitted with an outside-air intake and an exhaust nozzle. The main power unit includes an engine-type power unit as a main power source, fitted with a gas generator and with a power turbine for driving equipments including a supercharger. The supercharger is coupled, via a regulation control which communicates with the control unit, with the regulation system in order to supply a necessary pneumatic energy to the cabin.
    Type: Application
    Filed: June 10, 2016
    Publication date: September 29, 2016
    Applicant: TURBOMECA
    Inventor: Jean-Michel HAILLOT
  • Patent number: 9404419
    Abstract: A method for optimizing operability of an aircraft propulsive unit, and a self-contained power unit implementing the method. The method removes mechanical bleed constraints in engines during transient flight phases of an aircraft to optimize operability of the engine assembly during the phases. To this end, a supply of power is provided, particularly during the phases, by an additional indirectly propulsive engine power source. The method for optimizing operability of the propulsive unit of an aircraft including main engines as main drive sources includes, using a main engine power unit GPP as a power source, providing all the non-propulsive power and, during the transient engine phases, at most partially providing additional power to the body of the main engines.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: August 2, 2016
    Assignee: TURBOMECA
    Inventor: Jean-Michel Haillot
  • Publication number: 20160146116
    Abstract: A method optimizing fuel-injection control with driving speeds of apparatuses adjusted by controlling a turbine speed according to power, and optimizing control of a free turbine power package of an aircraft, including a low-pressure body, supplying power to apparatuses and linked to a high-pressure body. The method varies the low-pressure body speed to obtain a minimum speed for the high-pressure body, so power supplied by the apparatuses remains constant. Power supplied by the apparatuses is dependent upon the apparatuses driven speed by the low-pressure body, and a speed set point of the low-pressure body is dependent upon a maximum value of minimum speeds of the apparatuses, enabling required power to be optimized, upon a positive or zero incrementation added to the speed set point of the low-pressure body to minimize speed of the high-pressure body to the apparatuses power supply.
    Type: Application
    Filed: January 28, 2016
    Publication date: May 26, 2016
    Applicant: TURBOMECA
    Inventor: Jean-Michel HAILLOT
  • Patent number: 9303566
    Abstract: A method optimizing fuel-injection control with driving speeds of apparatuses adjusted by controlling a turbine speed according to power, and optimizing control of a free turbine power package of an aircraft, including a low-pressure body, supplying power to apparatuses and linked to a high-pressure body. The method varies the low-pressure body speed to obtain a minimum speed for the high-pressure body, so power supplied by the apparatuses remains constant. Power supplied by the apparatuses is dependent upon the apparatuses driven speed by the low-pressure body, and a speed set point of the low-pressure body is dependent upon a maximum value of minimum speeds of the apparatuses, enabling required power to be optimized, upon a positive or zero incrementation added to the speed set point of the low-pressure body to minimize speed of the high-pressure body to the apparatuses power supply.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: April 5, 2016
    Assignee: TURBOMECA
    Inventor: Jean-Michel Haillot
  • Patent number: 8868262
    Abstract: A method and system limiting specific consumption of an aircraft by matching sizing of a power supply to actual power needs of a cabin pressure control system. The method optimizes overall efficiency of energy supplied onboard an aircraft including, in an environment near the cabin, at least one main power-generating engine, sized to serve as a single pneumatic energy-generating source for the cabin and as an at most partial propulsive, hydraulic, and/or electric energy-generating source for the rest of the aircraft. The method minimizes power differential between a nominal point of the power sources when the sources are operating, and a sizing point of non-propulsive energy contributions of the sources when the main engine has failed, by equally dividing power contributions of the main engines and the main power generator under nominal operating conditions and in an event of failure of a main engine.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: October 21, 2014
    Assignee: Turbomeca
    Inventor: Jean-Michel Haillot
  • Publication number: 20140084677
    Abstract: A chain of components for transmitting electric power of an aircraft includes an auxiliary power unit (APU), main engines and end consumer systems via power networks and electronic connections controlled by a unit. The APU supplies power to a shaft by a connection to at least one energy converter unit, via a transmission unit, each converter unit comprising only one convertible electromechanical component. The transmission of power is effected by a direct connection to the transmission unit and to the end consumer system. The connection between a converter unit and the APU is provided by connecting the shaft of the APU to the shaft of the starter/generator (SG) via a directional transmission of power operating in one direction only from the shaft of the APU to the shaft of the SG.
    Type: Application
    Filed: May 15, 2012
    Publication date: March 27, 2014
    Applicant: TURBOMECA
    Inventor: Jean-Michel Haillot
  • Publication number: 20130151112
    Abstract: A method optimizing fuel-injection control with driving speeds of apparatuses adjusted by controlling a turbine speed according to power, and optimizing control of a free turbine power package of an aircraft, including a low-pressure body, supplying power to apparatuses and linked to a high-pressure body. The method varies the low-pressure body speed to obtain a minimum speed for the high-pressure body, so power supplied by the apparatuses remains constant. Power supplied by the apparatuses is dependent upon the apparatuses driven speed by the low-pressure body, and a speed set point of the low-pressure body is dependent upon a maximum value of minimum speeds of the apparatuses, enabling required power to be optimized, upon a positive or zero incrementation added to the speed set point of the low-pressure body to minimize speed of the high-pressure body to the apparatuses power supply.
    Type: Application
    Filed: August 23, 2011
    Publication date: June 13, 2013
    Applicant: TURBOMECA
    Inventor: Jean-Michel Haillot
  • Publication number: 20130151039
    Abstract: A method and system limiting specific consumption of an aircraft by matching sizing of a power supply to actual power needs of a cabin pressure control system. The method optimizes overall efficiency of energy supplied onboard an aircraft including, in an environment near the cabin, at least one main power-generating engine, sized to serve as a single pneumatic energy-generating source for the cabin and as an at most partial propulsive, hydraulic, and/or electric energy-generating source for the rest of the aircraft. The method minimizes power differential between a nominal point of the power sources when the sources are operating, and a sizing point of non-propulsive energy contributions of the sources when the main engine has failed, by equally dividing power contributions of the main engines and the main power generator under nominal operating conditions and in an event of failure of a main engine.
    Type: Application
    Filed: August 23, 2011
    Publication date: June 13, 2013
    Applicant: TURBOMECA
    Inventor: Jean-Michel Haillot
  • Publication number: 20130139522
    Abstract: A method for optimizing operability of an aircraft propulsive unit, and a self-contained power unit implementing the method. The method removes mechanical bleed constraints in engines during transient flight phases of an aircraft to optimize operability of the engine assembly during the phases. To this end, a supply of power is provided, particularly during the phases, by an additional indirectly propulsive engine power source. The method for optimizing operability of the propulsive unit of an aircraft including main engines as main drive sources includes, using a main engine power unit GPP as a power source, providing all the non-propulsive power and, during the transient engine phases, at most partially providing additional power to the body of the main engines.
    Type: Application
    Filed: August 23, 2011
    Publication date: June 6, 2013
    Applicant: Turbomeca
    Inventor: Jean-Michel Haillot