Patents by Inventor JEAN-PAUL WOLINSKY

JEAN-PAUL WOLINSKY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11657518
    Abstract: An embodiment in accordance with the present invention provides a method for 3D-2D registration (for example, registration of a 3D CT image to a 2D radiograph) that permits deformable motion between structures defined in the 3D image based on a series of locally rigid transformations. This invention utilizes predefined annotations in 3D images (e.g., the location of anatomical features of interest) to perform multiple locally rigid registrations that yield improved accuracy in aligning structures that have undergone deformation between the acquisition of the 3D and 2D images (e.g., a preoperative CT compared to an intraoperative radiograph). The 3D image is divided into subregions that are masked according to the annotations, and the registration is computed simultaneously for each divided region by incorporating a volumetric masking method within the 3D-2D registration process.
    Type: Grant
    Filed: May 11, 2022
    Date of Patent: May 23, 2023
    Assignee: The Johns Hopkins University
    Inventors: Michael Ketcha, Wathudurage Tharindu deSilva, Ali Uneri, Jean-Paul Wolinsky, Jeffrey H. Siewerdsen
  • Publication number: 20220313324
    Abstract: Featured is a vertebral body manipulation instrument or vertebral body manipulation device being configured and arranged to allow correction of vertebral translation. Such a vertebral body manipulation device embodies one or more identical modules that are configured as needed for correcting the deformity. Such a vertebral body manipulation device also is usable in combination with a plurality of vertebral anchors, such vertebral anchors being any such vertebral anchors as are known to those skilled in the art (e.g., conventional spinal pedicle screw instrumentation) or hereinafter developed so as to form a spinal implant system. Also featured are treatment methods utilizing such a vertebral body manipulation device.
    Type: Application
    Filed: June 17, 2022
    Publication date: October 6, 2022
    Inventors: Dan Stoianovici, Jean-Paul Wolinsky
  • Publication number: 20220270271
    Abstract: An embodiment in accordance with the present invention provides a method for 3D-2D registration (for example, registration of a 3D CT image to a 2D radiograph) that permits deformable motion between structures defined in the 3D image based on a series of locally rigid transformations. This invention utilizes predefined annotations in 3D images (e.g., the location of anatomical features of interest) to perform multiple locally rigid registrations that yield improved accuracy in aligning structures that have undergone deformation between the acquisition of the 3D and 2D images (e.g., a preoperative CT compared to an intraoperative radiograph). The 3D image is divided into subregions that are masked according to the annotations, and the registration is computed simultaneously for each divided region by incorporating a volumetric masking method within the 3D-2D registration process.
    Type: Application
    Filed: May 11, 2022
    Publication date: August 25, 2022
    Applicant: The Johns Hopkins University
    Inventors: Michael Ketcha, Wathudurage Tharindu deSilva, Ali Uneri, Jean-Paul Wolinsky, Jeffrey H. Siewerdsen
  • Patent number: 11382672
    Abstract: Featured is a vertebral body manipulation instrument or vertebral body manipulation device being configured and arranged to allow correction of vertebral translation. Such a vertebral body manipulation device embodies one or more identical modules that are configured as needed for correcting the deformity. Such a vertebral body manipulation device also is usable in combination with a plurality of vertebral anchors, such vertebral anchors being any such vertebral anchors as are known to those skilled in the art (e.g., conventional spinal pedicle screw instrumentation) or hereinafter developed so as to form a spinal implant system. Also featured are treatment methods utilizing such a vertebral body manipulation device.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: July 12, 2022
    Assignee: The Johns Hopkins University
    Inventors: Dan Stoianovici, Jean-Paul Wolinsky
  • Publication number: 20200113607
    Abstract: Featured is a vertebral body manipulation instrument or vertebral body manipulation device being configured and arranged to allow correction of vertebral translation. Such a vertebral body manipulation device embodies one or more identical modules that are configured as needed for correcting the deformity. Such a vertebral body manipulation device also is usable in combination with a plurality of vertebral anchors, such vertebral anchors being any such vertebral anchors as are known to those skilled in the art (e.g., conventional spinal pedicle screw instrumentation) or hereinafter developed so as to form a spinal implant system. Also featured are treatment methods utilizing such a vertebral body manipulation device.
    Type: Application
    Filed: April 20, 2018
    Publication date: April 16, 2020
    Inventors: Dan Stoianovici, Jean-Paul Wolinsky
  • Publication number: 20200065984
    Abstract: An embodiment in accordance with the present invention provides a method for 3D-2D registration (for example, registration of a 3D CT image to a 2D radiograph) that permits deformable motion between structures defined in the 3D image based on a series of locally rigid transformations. This invention utilizes predefined annotations in 3D images (e.g., the location of anatomical features of interest) to perform multiple locally rigid registrations that yield improved accuracy in aligning structures that have undergone deformation between the acquisition of the 3D and 2D images (e.g., a preoperative CT compared to an intraoperative radiograph). The 3D image is divided into subregions that are masked according to the annotations, and the registration is computed simultaneously for each divided region by incorporating a volumetric masking method within the 3D-2D registration process.
    Type: Application
    Filed: March 4, 2019
    Publication date: February 27, 2020
    Inventors: Michael Ketcha, Wathudurage Tharindu deSilva, Ali Uneri, Jean-Paul Wolinsky, Jeffrey H. Siewerdsen
  • Patent number: 10368956
    Abstract: An embodiment in accordance with the present invention provides a technique for localizing structures of interest in projection images (e.g., x-ray projection radiographs or fluoroscopy) based on structures defined in a preoperative 3D image (e.g., MR or CT). Applications include, but are not limited to, spinal interventions. The present invention achieves 3D-2D image registration (and particularly allowing use with a preoperative MR image) by segmenting the structures of interest in the preoperative 3D image and generating a simulated projection of the segmented structures to be aligned with the 2D projection image. Other applications include various clinical scenarios involving 3D-2D image registration, such as image-guided cranial neurosurgery, orthopedic surgery, biopsy, and radiation therapy.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: August 6, 2019
    Assignee: The Johns Hopkins University
    Inventors: Jeffrey H. Siewerdsen, Wathudurage Tharindu De Silva, Ali Uneri, Michael Ketcha, Sureerat Reaungamornrat, Jean-Paul Wolinsky
  • Patent number: 10271856
    Abstract: The Vertebral Osteotomy Saw Guide allows precise osteotomies to be performed through the vertebral column in conjunction with a thread-wire saw. The guide is designed so that it can mount to rods commonly used during spinal surgery for spinal stabilization. The mount of the guide is a polyaxial mount, allowing the angle of the guide mount to be adjusted and locked to create a desired cutting plane to produce a precise osteotomy. The guide itself consists of two interdigitated pulley wheels that allow the thread-wire saw to pass smoothly through the guide. The simple, but unique design of the guide allows a surgeon to perform an osteotomy through the vertebral column cutting from one side of the vertebral column to the other. This unique orientation allows the osteotomy to be performed away from critical structures in the region (the spinal cord, aorta, and inferior vena cava).
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: April 30, 2019
    Assignee: The Johns Hopkins University
    Inventors: Jean-Paul Wolinsky, Dan Stoianovici
  • Patent number: 10262424
    Abstract: An embodiment in accordance with the present invention provides a method for 3D-2D registration (for example, registration of a 3D CT image to a 2D radiograph) that permits deformable motion between structures defined in the 3D image based on a series of locally rigid transformations. This invention utilizes predefined annotations in 3D images (e.g., the location of anatomical features of interest) to perform multiple locally rigid registrations that yield improved accuracy in aligning structures that have undergone deformation between the acquisition of the 3D and 2D images (e.g., a preoperative CT compared to an intraoperative radiograph). The 3D image is divided into subregions that are masked according to the annotations, and the registration is computed simultaneously for each divided region by incorporating a volumetric masking method within the 3D-2D registration process.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: April 16, 2019
    Assignee: The Johns Hopkins University
    Inventors: Michael Ketcha, Wathudurage Tharindu deSilva, Ali Uneri, Jean-Paul Wolinsky, Jeffrey H. Siewerdsen
  • Publication number: 20170231713
    Abstract: An embodiment in accordance with the present invention provides a technique for localizing structures of interest in projection images (e.g., x-ray projection radiographs or fluoroscopy) based on structures defined in a preoperative 3D image (e.g., MR or CT). Applications include, but are not limited to, spinal interventions. The present invention achieves 3D-2D image registration (and particularly allowing use with a preoperative MR image) by segmenting the structures of interest in the preoperative 3D image and generating a simulated projection of the segmented structures to be aligned with the 2D projection image. Other applications include various clinical scenarios involving 3D-2D image registration, such as image-guided cranial neurosurgery, orthopedic surgery, biopsy, and radiation therapy.
    Type: Application
    Filed: February 16, 2017
    Publication date: August 17, 2017
    Inventors: Jeffrey H. Siewerdsen, Wathudurage Tharindu De Silva, Ali Uneri, Michael Ketcha, Sureerat Reaungamornrat, Jean-Paul Wolinsky
  • Publication number: 20170178349
    Abstract: An embodiment in accordance with the present invention provides a method for 3D-2D registration (for example, registration of a 3D CT image to a 2D radiograph) that permits deformable motion between structures defined in the 3D image based on a series of locally rigid transformations. This invention utilizes predefined annotations in 3D images (e.g., the location of anatomical features of interest) to perform multiple locally rigid registrations that yield improved accuracy in aligning structures that have undergone deformation between the acquisition of the 3D and 2D images (e.g., a preoperative CT compared to an intraoperative radiograph). The 3D image is divided into subregions that are masked according to the annotations, and the registration is computed simultaneously for each divided region by incorporating a volumetric masking method within the 3D-2D registration process.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 22, 2017
    Inventors: Michael Ketcha, Wathudrage Tharindu deSilva, Ali Uneri, Jean-Paul Wolinsky, Jeffrey H. Siewerdsen
  • Publication number: 20170079666
    Abstract: The Vertebral Osteotomy Saw Guide allows precise osteotomies to be performed through the vertebral column in conjunction with a thread-wire saw. The guide is designed so that it can mount to rods commonly used during spinal surgery for spinal stabilization. The mount of the guide is a polyaxial mount, allowing the angle of the guide mount to be adjusted and locked to create a desired cutting plane to produce a precise osteotomy. The guide itself consists of two interdigitated pulley wheels that allow the thread-wire saw to pass smoothly through the guide. The simple, but unique design of the guide allows a surgeon to perform an osteotomy through the vertebral column cutting from one side of the vertebral column to the other. This unique orientation allows the osteotomy to be performed away from critical structures in the region (the spinal cord, aorta, and inferior vena cava).
    Type: Application
    Filed: September 16, 2016
    Publication date: March 23, 2017
    Inventors: Jean-Paul Wolinsky, Dan Stoianovici
  • Patent number: 9165362
    Abstract: A method of 3D-2D registration for medical imaging includes the following steps: providing a first input interface for acquiring a three-dimensional image; providing a second input interface for acquiring a fixed two-dimensional image using an imaging system that includes a source and a detector and that has an unknown source-detector geometry; initializing image transformation parameters and source-detector geometry parameters; generating a reconstructed two-dimensional image from the three-dimensional image using the image transformation parameters and the source-detector geometry parameters; determining an image similarity metric between the fixed two-dimensional image and the reconstructed two-dimensional image; and updating the image transformation parameters and the source-detector geometry parameters using the image similarity metric, and a corresponding non-transitory computer-readable medium and apparatus.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: October 20, 2015
    Assignee: The Johns Hopkins University
    Inventors: Jeffrey Siewerdsen, Yoshito Otake, Jean-Paul Wolinsky
  • Patent number: 9161787
    Abstract: Featured is a reduction instrument being configured and arranged to allow correction of vertebral translation and applying distraction across a segment in an independent fashion. Such a reduction instrument embodies one or more identical modules that are configured as needed for correcting the deformity. In more particular embodiments, each of the one or more modules has two degrees of freedom (DOF) with uncoupled orthogonal translations. Such a reduction instrument allows the reorientation of the vertebral segment as needed via uncoupled orthogonal translations. Such a reduction instrument also is usable in combination with a plurality of vertebral anchors, such vertebral anchors being any such vertebral anchors as are know to those skilled in the art (e.g., conventional spinal pedicle screw instrumentation) or hereinafter developed so as to form a spinal implant system. Also featured are treatment methods utilizing such a reduction instrument.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: October 20, 2015
    Assignee: The Johns Hopkins University
    Inventors: Jean-Paul Wolinsky, Daniel Stoianovici
  • Publication number: 20140334709
    Abstract: A method of 3D-2D registration for medical imaging includes the following steps: providing a first input interface for acquiring a three-dimensional image; providing a second input interface for acquiring a fixed two-dimensional image using an imaging system that includes a source and a detector and that has an unknown source-detector geometry; initializing image transformation parameters and source-detector geometry parameters; generating a reconstructed two-dimensional image from the three-dimensional image using the image transformation parameters and the source-detector geometry parameters; determining an image similarity metric between the fixed two-dimensional image and the reconstructed two-dimensional image; and updating the image transformation parameters and the source-detector geometry parameters using the image similarity metric, and a corresponding non-transitory computer-readable medium and apparatus.
    Type: Application
    Filed: May 7, 2013
    Publication date: November 13, 2014
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: JEFFREY SIEWERDSEN, YOSHITO OTAKE, JEAN-PAUL WOLINSKY