Patents by Inventor Jean Pierre Bordes

Jean Pierre Bordes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11899126
    Abstract: A multi-chip MIMO radar system includes a plurality of transmitters and a plurality of receivers. Each of the pluralities of transmitters and receivers are arranged across a plurality of chips. The multi-chip MIMO radar system includes a central processor configured to receive data from the plurality of chips. The central processor is operable to combine the information from each radar chip to produce improved range detection and angular resolvability of targets.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: February 13, 2024
    Assignee: Uhnder, Inc.
    Inventors: Monier Maher, Arunesh Roy, Murtaza Ali, Jean Pierre Bordes, Curtis Davis
  • Patent number: 11726172
    Abstract: A radar sensing system includes a plurality of transmitters configured to transmit radio signals and a plurality of receivers configured to receive radio signals. First and second transmitters of the plurality of transmitters are configured to generate radio signals defined by first and second spreading code chip sequences, respectively. A first receiver of the plurality of receivers processes received radio signals as defined by a plurality of spreading code chip sequences that includes at least the first and second spreading code chip sequences. The radar sensing system also includes a code generator for generating the spreading code chip sequences.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: August 15, 2023
    Assignee: Uhnder, Inc
    Inventors: Monier Maher, Jean Pierre Bordes, Wayne E. Stark, Raghunath Krishna Rao, Frederick Rush, Curtis Davis, Srikanth Gollapudi, Steve Borho, Murtaza Ali
  • Publication number: 20220308160
    Abstract: An automotive radar using combinations of the techniques of alternating transmit-receive bursts of digitally frequency modulated millimeter wave carriers; sparse MIMO antenna arrays with sidelobe-suppressive coarse and fine beamforming; frequency hopping; range-walking-compensated Doppler analysis and successive, and subtractive target detection in signal strength order.
    Type: Application
    Filed: January 24, 2022
    Publication date: September 29, 2022
    Inventors: Paul W. Dent, Suleyman Gokhun Tanyer, Murtaza Ali, Frederick Rush, Monier Maher, Aria Eshraghi, Jean Pierre Bordes, Marius Goldenberg, Vasco Caldeira, Stephen William Alland, Curtis Davis
  • Patent number: 11454697
    Abstract: A radar includes transmitters, receivers, a memory, and a processor. The transmitters transmit radio signals, and the receivers receive reflected radio signals. The processor produces samples by correlating reflected radio signals with time-delayed replicas of transmitted radio signals. The processor stores this information as a first data structure, with information related to signals reflected from objects as a function of time (one dimension of the data structure) at various distances (a second dimension of the data structure) for various receivers (a third dimension of the data structure). The first data structure is processed to compute velocity and angle estimates, which are stored in second and third data structures, respectively. One or more memory optimizations are used to increase performance. Before storing the second and third data structures in a memory, the second and third data structures are sparsified to only include the outputs in specific regions of interest.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: September 27, 2022
    Assignee: Uhnder, Inc.
    Inventors: Monier Maher, Jean Pierre Bordes, Curtis Davis
  • Publication number: 20210215790
    Abstract: A multi-chip MIMO radar system includes a plurality of transmitters and a plurality of receivers. Each of the pluralities of transmitters and receivers are arranged across a plurality of chips. The multi-chip MIMO radar system includes a central processor configured to receive data from the plurality of chips. The central processor is operable to combine the information from each radar chip to produce improved range detection and angular resolvability of targets.
    Type: Application
    Filed: January 13, 2021
    Publication date: July 15, 2021
    Inventors: Monier Maher, Arunesh Roy, Murtaza Ali, Jean Pierre Bordes, Curtis Davis
  • Publication number: 20210181301
    Abstract: A radar sensing system includes a plurality of transmitters configured to transmit radio signals and a plurality of receivers configured to receive radio signals. First and second transmitters of the plurality of transmitters are configured to generate radio signals defined by first and second spreading code chip sequences, respectively. A first receiver of the plurality of receivers processes received radio signals as defined by a plurality of spreading code chip sequences that includes at least the first and second spreading code chip sequences. The radar sensing system also includes a code generator for generating the spreading code chip sequences.
    Type: Application
    Filed: March 2, 2021
    Publication date: June 17, 2021
    Inventors: Monier Maher, Jean Pierre Bordes, Wayne E. Stark, Raghunath Krishna Rao, Frederick Rush, Curtis Davis, Srikanth Gollapudi, Steve Borho, Murtaza Ali
  • Publication number: 20210096210
    Abstract: A radar includes transmitters, receivers, a memory, and a processor. The transmitters transmit radio signals, and the receivers receive reflected radio signals. The processor produces samples by correlating reflected radio signals with time-delayed replicas of transmitted radio signals. The processor stores this information as a first data structure, with information related to signals reflected from objects as a function of time (one dimension of the data structure) at various distances (a second dimension of the data structure) for various receivers (a third dimension of the data structure). The first data structure is processed to compute velocity and angle estimates, which are stored in second and third data structures, respectively. One or more memory optimizations are used to increase performance. Before storing the second and third data structures in a memory, the second and third data structures are sparsified to only include the outputs in specific regions of interest.
    Type: Application
    Filed: December 14, 2020
    Publication date: April 1, 2021
    Inventors: Monier Maher, Jean Pierre Bordes, Curtis Davis
  • Patent number: 10935633
    Abstract: A radar sensing system for a vehicle has multiple transmitters and receivers on a vehicle. The transmitters are configured to transmit radio signals which are reflected off of objects in the environment. There are one or more receivers that receive the reflected radio signals. Each receiver has an antenna, a radio frequency front end, an analog-to-digital converter (ADC), and a digital signal processor. The transmitted signals are based on spreading codes generated by a programmable code generation unit. The receiver also makes use of the spreading codes generated by the programmable code generation unit. The programmable code generation unit is configured to selectively generate particular spreading codes that have desired properties.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: March 2, 2021
    Assignee: Uhnder, Inc.
    Inventors: Monier Maher, Jean Pierre Bordes, Wayne E. Stark, Raghunath Krishna Rao, Frederick Rush, Curtis Davis, Srikanth Gollapudi, Steve Borho, Murtaza Ali
  • Patent number: 10866306
    Abstract: A radar sensing system for a vehicle includes transmitters, receivers, a memory, and a processor. The transmitters transmit radio signals and the receivers receive reflected radio signals. The processor produces samples by correlating reflected radio signals with time-delayed replicas of transmitted radio signals. The processor stores this information as a first radar data cube (RDC), with information related to signals reflected from objects as a function of time (one of the dimensions) at various distances (a second dimension) for various receivers (a third dimension). The first RDC is processed to compute velocity and angle estimates, which are stored in a second RDC and a third RDC, respectively. One or more memory optimizations are used to increase performance. Before storing the second RDC and the third RDC in an internal/external memory, the second and third RDCs are sparsified to only include the outputs in specific regions of interest.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: December 15, 2020
    Assignee: UHNDER, INC.
    Inventors: Monier Maher, Jean Pierre Bordes, Curtis Davis
  • Publication number: 20200284873
    Abstract: A radar sensing system for a vehicle has multiple transmitters and receivers on a vehicle. The transmitters are configured to transmit radio signals which are reflected off of objects in the environment. There are one or more receivers that receive the reflected radio signals. Each receiver has an antenna, a radio frequency front end, an analog-to-digital converter (ADC), and a digital signal processor. The transmitted signals are based on spreading codes generated by a programmable code generation unit. The receiver also makes use of the spreading codes generated by the programmable code generation unit. The programmable code generation unit is configured to selectively generate particular spreading codes that have desired properties.
    Type: Application
    Filed: May 27, 2020
    Publication date: September 10, 2020
    Inventors: Monier Maher, Jean Pierre Bordes, Wayne E. Stark, Raghunath Krishna Rao, Frederick Rush, Curtis Davis, Srikanth Gollapudi, Steve Borho, Murtaza Ali
  • Patent number: 10670695
    Abstract: A radar sensing system for a vehicle has multiple transmitters and receivers on a vehicle. The transmitters are configured to transmit radio signals which are reflected off of objects in the environment. There are one or more receivers that receive the reflected radio signals. Each receiver has an antenna, a radio frequency front end, an analog-to-digital converter (ADC), and a digital signal processor. The transmitted signals are based on spreading codes generated by a programmable code generation unit. The receiver also makes use of the spreading codes generated by the programmable code generation unit. The programmable code generation unit is configured to selectively generate particular spreading codes that have desired properties.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: June 2, 2020
    Assignee: Uhnder, Inc.
    Inventors: Monier Maher, Jean Pierre Bordes, Wayne E. Stark, Raghunath Krishna Rao, Frederick Rush, Curtis Davis, Srikanth Gollapudi, Steve Borho, Murtaza Ali
  • Publication number: 20180231636
    Abstract: A radar sensing system for a vehicle includes transmitters, receivers, a memory, and a processor. The transmitters transmit radio signals and the receivers receive reflected radio signals. The processor produces samples by correlating reflected radio signals with time-delayed replicas of transmitted radio signals. The processor stores this information as a first radar data cube (RDC), with information related to signals reflected from objects as a function of time (one of the dimensions) at various distances (a second dimension) for various receivers (a third dimension). The first RDC is processed to compute velocity and angle estimates, which are stored in a second RDC and a third RDC, respectively. One or more memory optimizations are used to increase performance. Before storing the second RDC and the third RDC in an internal/external memory, the second and third RDCs are sparsified to only include the outputs in specific regions of interest.
    Type: Application
    Filed: February 9, 2018
    Publication date: August 16, 2018
    Applicant: UHNDER, INC.
    Inventors: Monier Maher, Jean Pierre Bordes, Curtis Davis
  • Publication number: 20180231656
    Abstract: A radar sensing system for a vehicle has multiple transmitters and receivers on a vehicle. The transmitters are configured to transmit radio signals which are reflected off of objects in the environment. There are one or more receivers that receive the reflected radio signals. Each receiver has an antenna, a radio frequency front end, an analog-to-digital converter (ADC), and a digital signal processor. The transmitted signals are based on spreading codes generated by a programmable code generation unit. The receiver also makes use of the spreading codes generated by the programmable code generation unit. The programmable code generation unit is configured to selectively generate particular spreading codes that have desired properties.
    Type: Application
    Filed: February 9, 2018
    Publication date: August 16, 2018
    Inventors: Monier Maher, Jean Pierre Bordes, Wayne E. Stark, Raghunath Krishna Rao, Frederick Rush, Curtis Davis, Srikanth Gollapudi, Steve Borho, Murtaza Ali
  • Patent number: 8243064
    Abstract: A physics software development kit (PSDK) provides scalable physics content as a “vertical” that defines one or more physics simulations for a graphics asset in a graphics scene. The vertical and the graphics asset may be provided in a verticals library associated with the PSDK or generated using the PSDK. The PSDK integrates the vertical into an existing graphics application to generate physically-realistic graphics content. The vertical may be scaled by a user according to the capabilities of a computer system that executes the PSDK or, alternatively, may be scaled by the PSDK based on received hardware capabilities information. The PSDK selectively offloads the physics simulations associated with the vertical to a physics processing unit to optimize usage of processor resources. In addition, the PSDK provides a technique to extract a graphics asset based on an existing 3D model of the object.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: August 14, 2012
    Assignee: NVIDIA Corporation
    Inventors: Adam Moravanszky, Dennis Gustafsson, Jean Pierre Bordes, Peter Tchernev, Bryan Richard Galdrikian, Simon Schirm, Dilip Sequeira, Bruno Heidelberger, Curtis Matthew Davis
  • Patent number: 7895411
    Abstract: One embodiment of the invention sets forth a hardware-based physics processing unit (PPU) having unique architecture designed to efficiently generate physics data. The PPU includes a PPU control engine (PCE), a data movement engine and a floating point engine (FPE). The PCE manages the overall operation of the PPU by allocating memory resources and transmitting graphics processing commands to the FPE and data movement commands to the DME. The FPE includes multiple vector processors that operate in parallel and perform floating point operations on data received from a host unit to generate physics simulation data. The DME facilitates the transmission of data between the host unit and the FPE by performs data movement operations between memories internal and external to the PPU.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: February 22, 2011
    Assignee: NVIDIA Corporation
    Inventors: Monier Maher, Otto A. Schmid, Curtis Davis, Manju Hegde, Jean Pierre Bordes
  • Patent number: 7774181
    Abstract: A system and method of providing physics data generated by a physics simulation and consumed by main application are provided. The main application may incorporate different scene versions or varying physics-based complexity while running on systems having different hardware and software resources.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: August 10, 2010
    Assignee: NVIDIA Corporation
    Inventor: Jean Pierre Bordes
  • Patent number: 7739479
    Abstract: A method of providing physics data within a game program or simulation using a hardware-based physics processing unit having unique architecture designed to efficiently calculate physics related data.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: June 15, 2010
    Assignee: NVIDIA Corporation
    Inventors: Jean Pierre Bordes, Curtis Davis, Monier Maher, Manju Hegde, Otto A. Schmid
  • Patent number: 7627744
    Abstract: An integrated circuit comprises an external memory, a plurality of parallel connected Vector Processing Engines (VPEs), and an External Memory Unit (EMU) providing a data transfer path between the VPEs and the external memory. Each VPE contains a plurality of data processing units and a message queuing system adapted to transfer messages between the data processing units and other components of the integrated circuit.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: December 1, 2009
    Assignee: NVIDIA Corporation
    Inventors: Monier Maher, Jean Pierre Bordes, Christopher Lamb, Sanjay J. Patel
  • Patent number: 7620530
    Abstract: A PPU-enhanced computer system is provided including a Physics Processing Unit (PPU), a Graphics Processing Unit (GPU), a Central Processing Unit (CPU) and a main memory, wherein the system creates an animation from application data stored in the main memory by data communication between the GPU, PPU, CPU and main memory. The system may include a memory controller and a chip set connecting the bus structure to the CPU and GPU through an I/O interface and connecting the PPU though a bus structure. The PPU may be a separate processing core logically grouped with the CPU and GPU processing cores. In this preferred embodiment, the CPU, GPU and PPU receive data from a common L2 cache and/or a main system memory.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: November 17, 2009
    Assignee: NVIDIA Corporation
    Inventors: Jean Pierre Bordes, Curtis Davis, Manju Hegde
  • Patent number: 7565279
    Abstract: Embodiments of a callback procedure mechanism and method are disclosed in relation to a system running a physics simulation in parallel with a main application. A main application registers callback procedures in memory shared with the physics simulation in response to data generated by the physics simulation. The callback procedures are executed by the physics simulation with data generated by the physics simulation.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: July 21, 2009
    Assignee: NVIDIA Corporation
    Inventor: Jean Pierre Bordes