Patents by Inventor Jean-Pierre Lebel

Jean-Pierre Lebel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8899321
    Abstract: Described are methods of distributing a viscosity reducing solvent to a set of wells terminating in an underground oil reservoir where the variation in the net solvent injection rate is minimized. The net solvent injection rate is the difference between the total solvent injection rate and the total solvent production rate from the set of wells, for example on an instantaneous or daily rate basis. Minimizing this variation can reduce costs associated with surface solvent storage, subsurface solvent storage, and solvent supply, since solvent supply often is least expensive when supplied at near a fixed rate. One option is to operate well pairs and to inject solvent into one well of the pair while producing oil and solvent from the other well of the pair. These methods are particularly useful in solvent-dominated, cyclic or non-cyclic, viscous oil recovery processes.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: December 2, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Matthew A Dawson, Owen J Hehmeyer, Robert D Kaminsky, Mori Y Kwan, Jean-Pierre Lebel, Robert Chick Wattenbarger, Thomas J Boone
  • Publication number: 20120325467
    Abstract: A method of operating a cyclic solvent-dominated recovery process (CSDRP) for recovering viscous oil from a subterranean reservoir of the viscous oil. The cyclic solvent process involves using an injection well to inject a viscosity-reducing solvent into a subterranean viscous oil reservoir. Reduced viscosity oil is produced to the surface using the same well used to inject solvent. The process of alternately injecting solvent and producing a solvent/viscous oil blend through the same wellbore continues in a series of cycles until additional cycles are no longer economical. Aspects of the invention relate to the particular volume of solvent injected in each cycle, when to switch from production to injection, the injection pressure to be used, the production pressure to be used, and to middle and late life operation.
    Type: Application
    Filed: October 6, 2010
    Publication date: December 27, 2012
    Inventors: Jean-Pierre Lebel, Thomas J. Boone, Adam S. Coutee, Matthew A. Dawson, Owen J. Hehmeyer, Robert D. Kaminsky, Rahman Khaledi, Ivan J. Kosik, Mori Y. Kwan, Robert Chick Wattenbarger
  • Publication number: 20110295771
    Abstract: Described are methods of distributing a viscosity reducing solvent to a set of wells terminating in an underground oil reservoir where the variation in the net solvent injection rate is minimized. The net solvent injection rate is the difference between the total solvent injection rate and the total solvent production rate from the set of wells, for example on an instantaneous or daily rate basis. Minimizing this variation can reduce costs associated with surface solvent storage, subsurface solvent storage, and solvent supply, since solvent supply often is least expensive when supplied at near a fixed rate. One option is to operate well pairs and to inject solvent into one well of the pair while producing oil and solvent from the other well of the pair. These methods are particularly useful in solvent-dominated, cyclic or non-cyclic, viscous oil recovery processes.
    Type: Application
    Filed: April 11, 2011
    Publication date: December 1, 2011
    Inventors: Matthew A Dawson, Owen J Hehmeyer, Robert D Kaminsky, Mori Y Kwan, Jean-Pierre Lebel, Robert Chick Wattenbarger, Thomas J Boone
  • Publication number: 20110272152
    Abstract: To recover oil, including viscous oil, from an underground reservoir, a cyclic solvent-dominated recovery process may be used. A viscosity reducing solvent is injected, and oil and solvent are produced. Unlike steam-dominated recovery processes, solvent-dominated recovery processes cause viscous fingering which should be controlled. To control viscous fingering, operational synchronization is used within groups and not between adjacent groups.
    Type: Application
    Filed: March 29, 2011
    Publication date: November 10, 2011
    Inventors: Robert Kaminsky, Adam Coutee, Matthew A. Dawson, Owen J. Hehmeyer, Hao Huang, Ivan J. Kosik, Jean-Pierre Lebel, Robert Chick Wattenbarger