Patents by Inventor Jeevak Parpia

Jeevak Parpia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070200648
    Abstract: An array of micromechanical oscillators have different resonant frequencies based on their geometries. In one embodiment, a micromechanical oscillator has a resonant frequency defined by an effective spring constant that is modified by application of heat. In one embodiment, the oscillator is disc of material supported by a pillar of much smaller diameter than the disc. The periphery of the disc is heated to modify the resonant frequency (or equivalently the spring constant or stiffness) of the disc. Continuous control of the output phase and frequency may be achieved when the oscillator becomes synchronized with an imposed sinusoidal force of close frequency. The oscillator frequency can be detuned to produce an easily controlled phase differential between the injected signal and the oscillator feedback. A phased array radar may be produced using independent phase controllable oscillators.
    Type: Application
    Filed: November 9, 2006
    Publication date: August 30, 2007
    Inventors: Robert Reichenbach, Keith Aubin, Maxim Zalalutdinov, Jeevak Parpia, Harold Craighead
  • Publication number: 20070109656
    Abstract: A method of increasing a quality factor for a micromechanical resonator uses a laser beam to anneal the micromechanical resonator. In one embodiment, the micromechanical oscillator is formed by fabricating a mushroom shaped silicon oscillator supported by a substrate via a pillar. The laser beam is focused on a periphery of the mushroom shaped silicon oscillator to modify the surface of the mushroom shaped silicon oscillator. In a further embodiment, the mushroom shaped oscillator is a silicon disk formed on a sacrificial layer. Portions of the sacrificial layer are removed to free the periphery of the disk and leave a supporting pillar at the center of the disk. In further embodiments, different type resonators may be used.
    Type: Application
    Filed: February 20, 2006
    Publication date: May 17, 2007
    Inventors: Keith Aubin, Maxim Zalalutdinov, Lidija Sekaric, Brian Houston, Alan Zehnder, Jeevak Parpia, Harold Craighead
  • Publication number: 20060238239
    Abstract: A source signal is converted into a time-variant temperature field with transduction into mechanical motion. In one embodiment, the conversion of a source signal into the time-variant temperature field is provided by utilizing a micro-fabricated fast response, bolometer-type radio frequency power meter. A resonant-type micromechanical thermal actuator may be utilized for temperature read-out and demodulation.
    Type: Application
    Filed: February 20, 2006
    Publication date: October 26, 2006
    Inventors: Maxim Zalalutdinov, Robert Reichenbach, Keith Aubin, Brian Houston, Jeevak Parpia, Harold Craighead
  • Publication number: 20060239635
    Abstract: A micromechanical resonator is formed on a substrate. The resonator has a partial spherical shell clamped on an outside portion of the shell to the substrate. In other embodiments, a flat disc or other shape may be used. Movement is induced in a selected portion of the disc, inducing easily detectible out-of-plane motion. A laser is used in one embodiment to heat the selected portion of the disc and induce the motion. The motion may be detected by capacitive or interferometric techniques.
    Type: Application
    Filed: February 20, 2006
    Publication date: October 26, 2006
    Inventors: Maxim Zalalutdinov, Robert Reichenbach, Keith Aubin, Brian Houston, Jeevak Parpia, Harold Craighead
  • Publication number: 20060210102
    Abstract: Position tracking of a receiving device within a gas or fluidic environment (for example a human body), is performed by measuring acoustic wave propagation parameters to provide real time, high precision telemetry. Multiple synchronized acoustic sources at different known locations transmit signals that are received by a receiver on the device to be located. The coordinates of the receiver can be determined by measuring a difference in the amplitude (coarse positioning) or phase (precise positioning) of the acoustic waves coming from different sources using triangulation calculations.
    Type: Application
    Filed: February 20, 2006
    Publication date: September 21, 2006
    Inventors: Maxim Zalalutdinov, Keith Aubin, Robert Reichenbach, Jeevak Parpia, Harold Craighead
  • Publication number: 20060176122
    Abstract: The temperature of a remote portion of device having a microelectromechanical oscillator is modulated to create oscillation of the oscillators. In one embodiment, a localized heat source is placed on a device layer of a multilayered stack, consisting of device, sacrificial and substrate layers. The localized heat source may be a laser beam in one embodiment. The oscillator is supported by the device layer and may be formed in the device layer in various embodiments. The oscillator may be spaced apart from the localized heat source.
    Type: Application
    Filed: January 20, 2006
    Publication date: August 10, 2006
    Inventors: Keith Aubin, Bojan Ilic, Maxim Zalalutdinov, Robert Reichenbach, Jeevak Parpia, Harold Craighead