Patents by Inventor Jeff Buchle

Jeff Buchle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7542304
    Abstract: The present invention stacks integrated circuits (ICs) into modules that conserve PWB or other board surface area. In another aspect, the invention provides a lower capacitance memory expansion addressing system and method and preferably with the CSP stacked modules provided herein. In a preferred embodiment in accordance with the invention, a form standard provides a physical form that allows many of the varying package sizes found in the broad family of CSP packages to be used to advantage while employing a standard connective flex circuitry design. In a preferred embodiment, the form standard will be devised of heat transference material such as copper to improve thermal performance. In a preferred embodiment of the memory addressing system, a high speed switching system selects a data line associated with each level of a stacked module to reduce the loading effect upon data signals in memory access.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: June 2, 2009
    Assignee: Entorian Technologies, LP
    Inventors: Russell Rapport, James W. Cady, James Wilder, David L. Roper, James Douglas Wehrly, Jr., Jeff Buchle
  • Patent number: 7495334
    Abstract: The present invention stacks chip scale-packaged integrated circuits (CSPs) into modules that conserve PWB or other board surface area. In a two-high CSP stack or module devised in accordance with a preferred embodiment of the present invention, two CSPs are stacked, with one CSP disposed above the other. The two CSPs are connected with flex circuitry. A form standard is disposed between the flex circuitry and a CSP in the stack. The form standard can take many configurations and may be used where flex circuits are used to connect CSPs to one another in stacked modules having two or more constituent CSPs. For example, in stacked modules that include four CSPs, three form standards are employed in preferred embodiments, although fewer may be used. The form standard provides a thermally conductive physical form that allows many of the varying package sizes found in the broad family of CSP packages to be used to advantage while employing a standard connective flex circuitry design.
    Type: Grant
    Filed: August 4, 2005
    Date of Patent: February 24, 2009
    Assignee: Entorian Technologies, LP
    Inventors: Russell Rapport, James W. Cady, James Wilder, David L. Roper, James Douglas Wehrly, Jr., Jeff Buchle, Julian Dowden
  • Patent number: 7485951
    Abstract: An IC die and a flexible circuit structure are integrated into a lower stack element that can be stacked with either further integrated lower stack element iterations or with pre-packaged ICs in any of a variety of package types. The present invention may be employed to stack similar or dissimilar integrated circuits and may be used to create modularized systems. In a preferred embodiment, a die is positioned above the surface of portions of a pair of flex circuits. Connection is made between the die and the flex circuitry. A protective layer such as a molded plastic, for example, is formed to protect the flex-connected die and its connection to the flex. Connective elements are placed along the flex circuitry to create an array of module contacts along the second side of the flex circuitry. The flex circuitry is positioned above the body-protected die to create an integrated lower stack element.
    Type: Grant
    Filed: May 9, 2003
    Date of Patent: February 3, 2009
    Assignee: Entorian Technologies, LP
    Inventors: David L. Roper, Curtis Hart, James Wilder, Phill Bradley, James G. Cady, Jeff Buchle, James Douglas Wehrly, Jr.
  • Publication number: 20080067662
    Abstract: An IC die and a flexible circuit structure are integrated into a lower stack element that can be stacked with either further integrated lower stack element iterations or with pre-packaged ICs in any of a variety of package types. A die is positioned above the surface of portions of a pair of flex circuits. Connection is made between the die and the flex circuitry. A protective layer is formed to protect the flex-connected die and its connection to the flex. Connective elements are placed along the flex circuitry to create an array of module contacts along the second side of the flex circuitry. The flex circuitry is positioned above the body-protected die to create an integrated lower stack element. The integrated lower stack element may be stacked either with iterations of the integrated lower stack element or with a pre-packaged IC to create a multi-element stacked circuit module.
    Type: Application
    Filed: November 16, 2007
    Publication date: March 20, 2008
    Inventors: David Roper, Curtis Hart, James Wilder, Phill Bradley, James Cady, Jeff Buchle, James Wehrly
  • Patent number: 7256484
    Abstract: The present invention stacks chip scale-packaged integrated circuits (CSPs) into modules that conserve PWB or other board surface area. In another aspect, the invention provides a lower capacitance memory expansion addressing system and method and preferably with the CSP stacked modules provided herein. In a preferred embodiment in accordance with the invention, a form standard is disposed between the flex circuitry and the IC package over which a portion of the flex circuitry is laid. The form standard provides a physical form that allows many of the varying package sizes found in the broad family of CSP packages to be used to advantage while employing a standard connective flex circuitry design. In a preferred embodiment, the form standard will be devised of heat transference material such as copper to improve thermal performance.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: August 14, 2007
    Assignee: Staktek Group L.P.
    Inventors: Russell Rapport, James W. Cady, James Wilder, David L. Roper, James Douglas Wehrly, Jr., Jeff Buchle
  • Patent number: 7202555
    Abstract: The present invention stacks integrated circuits into modules that conserve board surface area. In a two-high stack or module devised in accordance with a preferred embodiment of the present invention, a pair of integrated circuits is stacked, with one integrated circuit above the other. The two integrated circuits are connected with a pair of flexible circuit structures. Each of the pair of flexible circuit structures is partially wrapped about a respective opposite lateral edge of the lower integrated circuit of the module. The flex circuit pair connects the upper and lower integrated circuits and provides a thermal and electrical path connection path between the module and its application environment. The module has a bailout pattern with a different pitch and/or supplemental module contacts devised to allow combined signaling to the integrated circuits through contacts having a desired ballout footprint.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: April 10, 2007
    Assignee: Staktek Group L.P.
    Inventors: David L. Roper, James W. Cady, James Wilder, James Douglas Wehrly, Jr., Jeff Buchle, Julian Dowden
  • Patent number: 7094632
    Abstract: The present invention stacks chip scale-packaged integrated circuits (CSPs) into low profile modules that conserve PWB or other board surface area. Low profile structures provide connection between CSPs of the stacked module and between and to the flex circuitry. Low profile contacts are created by any of a variety of methods and materials including, for example, screen paste techniques and use of high temperature solders, although other application techniques and traditional solders may be employed for creating low profile contacts in the present invention. A consolidated low profile contact structure and technique is provided for use in alternative embodiments of the present invention. The CSPs employed in stacked modules devised in accordance with the present invention are connected with flex circuitry. That flex circuitry may exhibit one or two or more conductive layers.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: August 22, 2006
    Assignee: Staktek Group L.P.
    Inventors: James W. Cady, Julian Partridge, James Douglas Wehrly, Jr., James Wilder, David L. Roper, Jeff Buchle
  • Publication number: 20060131716
    Abstract: The present invention stacks integrated circuits into modules that conserve board surface area. In a two-high stack or module devised in accordance with a preferred embodiment of the present invention, a pair of integrated circuits is stacked, with one integrated circuit above the other. The two integrated circuits are connected with a pair of flexible circuit structures. Each of the pair of flexible circuit structures is partially wrapped about a respective opposite lateral edge of the lower integrated circuit of the module. The flex circuit pair connects the upper and lower integrated circuits and provides a thermal and electrical path connection path between the module and an application environment such as a printed wiring board (PWB). The present invention may be employed to advantage in numerous configurations and combinations of integrated circuits in modules provided for high-density memories or high capacity computing.
    Type: Application
    Filed: December 22, 2005
    Publication date: June 22, 2006
    Inventors: James Cady, James Wilder, David Roper, James Wehrly, Julian Dowden, Jeff Buchle
  • Patent number: 7053478
    Abstract: The present invention stacks integrated circuits into modules that conserve board surface area. In a two-high stack or module devised in accordance with a preferred embodiment of the present invention, a pair of integrated circuits is stacked, with one integrated circuit above the other. The two integrated circuits are connected with a pair of flexible circuit structures. Each of the pair of flexible circuit structures is partially wrapped about a respective opposite lateral edge of the lower integrated circuit of the module. The flex circuit pair connects the upper and lower integrated circuits and provides a thermal and electrical path connection path between the module and its application environment. The module has a ballout pattern with a different pitch and/or supplemental module contacts devised to allow combined signaling to the integrated circuits through contacts having a desired ballout footprint.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: May 30, 2006
    Assignee: Staktek Group L.P.
    Inventors: David L. Roper, James W. Cady, James Wilder, James Douglas Wehrly, Jr., Jeff Buchle, Julian Dowden
  • Publication number: 20060091521
    Abstract: The present invention stacks integrated circuits into modules that conserve board surface area. In a two-high stack or module devised in accordance with a preferred embodiment of the present invention, a pair of integrated circuits is stacked, with one integrated circuit above the other. The two integrated circuits are connected with a pair of flexible circuit structures. Each of the pair of flexible circuit structures is partially wrapped about a respective opposite lateral edge of the lower integrated circuit of the module. The flex circuit pair connects the upper and lower integrated circuits and provides a thermal and electrical path connection path between the module and an application environment such as a printed wiring board (PWB). The present invention may be employed to advantage in numerous configurations and combinations of integrated circuits in modules provided for high-density memories or high capacity computing.
    Type: Application
    Filed: December 21, 2005
    Publication date: May 4, 2006
    Inventors: James Cady, James Wilder, David Roper, James Wehrly, Julian Dowden, Jeff Buchle
  • Patent number: 7026708
    Abstract: The present invention stacks chip scale-packaged integrated circuits (CSPs) into low profile modules that conserve PWB or other board surface area. Low profile contacts are created by any of a variety of methods and materials. A consolidated low profile contact structure and technique is provided for use in alternative embodiments of the present invention. Multiple numbers of CSPs may be stacked in accordance with the present invention. The CSPs employed in stacked modules devised in accordance with the present invention are connected with flex circuitry that exhibit one or two or more conductive layers.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: April 11, 2006
    Assignee: Staktek Group L.P.
    Inventors: James W. Cady, Julian Partridge, James Douglas Wehrly, Jr., James Wilder, David L. Roper, Jeff Buchle
  • Publication number: 20050280135
    Abstract: The present invention stacks chip scale-packaged integrated circuits (CSPs) into modules that conserve PWB or other board surface area. In a two-high CSP stack or module devised in accordance with a preferred embodiment of the present invention, two CSPs are stacked, with one CSP disposed above the other. The two CSPs are connected with flex circuitry. A form standard is disposed between the flex circuitry and a CSP in the stack. The form standard can take many configurations and may be used where flex circuits are used to connect CSPs to one another in stacked modules having two or more constituent CSPs. For example, in stacked modules that include four CSPs, three form standards are employed in preferred embodiments, although fewer may be used. The form standard provides a thermally conductive physical form that allows many of the varying package sizes found in the broad family of CSP packages to be used to advantage while employing a standard connective flex circuitry design.
    Type: Application
    Filed: August 4, 2005
    Publication date: December 22, 2005
    Inventors: Russell Rapport, James Cady, James Wilder, David Roper, James Wehrly, Jeff Buchle, Julian Dowden
  • Patent number: 6955945
    Abstract: The present invention stacks chip scale-packaged integrated circuits (CSPs) into modules that conserve PWB or other board surface area. In another aspect, the invention provides a lower capacitance memory expansion addressing system and method and preferably with the CSP stacked modules provided herein. In a preferred embodiment in accordance with the invention, a form standard is disposed between the flex circuitry and the IC package over which a portion of the flex circuitry is laid. In a preferred embodiment, the form standard will be devised of heat transference material such as copper to improve thermal performance. In a preferred embodiment, a high speed switching system selects a data line associated with each level of a stacked module to reduce the loading effect upon data signals in memory access. This favorably changes the impedance characteristics exhibited by a DIMM board populated with stacked modules.
    Type: Grant
    Filed: May 25, 2004
    Date of Patent: October 18, 2005
    Assignee: Staktek Group L.P.
    Inventors: Russell Rapport, James W. Cady, James Wilder, David L. Roper, James Douglas Wehrly, Jr., Jeff Buchle
  • Publication number: 20050146011
    Abstract: The present invention stacks integrated circuits into modules that conserve board surface area. In a two-high stack or module devised in accordance with a preferred embodiment of the present invention, a pair of integrated circuits is stacked, with one integrated circuit above the other. The two integrated circuits are connected with a pair of flexible circuit structures. Each of the pair of flexible circuit structures is partially wrapped about a respective opposite lateral edge of the lower integrated circuit of the module. The flex circuit pair connects the upper and lower integrated circuits and provides a thermal and electrical path connection path between the module and its application environment. The module has a bailout pattern with a different pitch and/or supplemental module contacts devised to allow combined signaling to the integrated circuits through contacts having a desired bailout footprint.
    Type: Application
    Filed: March 8, 2005
    Publication date: July 7, 2005
    Inventors: David Roper, James Cady, James Wilder, James Wehrly, Jeff Buchle, Julian Dowden
  • Patent number: 6914324
    Abstract: The present invention stacks chip scale-packaged integrated circuits (CSPs) into modules that conserve PWB or other board surface area. In another aspect, the invention provides a lower capacitance memory expansion addressing system and method and preferably with the CSP stacked modules provided herein. In a preferred embodiment in accordance with the invention, a form standard is disposed between the flex circuitry and the IC package over which a portion of the flex circuitry is laid. The form standard provides a physical form that allows many of the varying package sizes found in the broad family of CSP packages to be used to advantage while employing a standard connective flex circuitry design. In a preferred embodiment, the form standard will be devised of heat transference material such as copper to improve thermal performance.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: July 5, 2005
    Assignee: Staktek Group L.P.
    Inventors: Russell Rapport, James W. Cady, James Wilder, David L. Roper, James Douglas Wehrly, Jr., Jeff Buchle
  • Publication number: 20050067683
    Abstract: The present invention stacks chip scale-packaged integrated circuits (CSPs) into modules that conserve PWB or other board surface area. In another aspect, the invention provides a lower capacitance memory expansion addressing system and method and preferably with the CSP stacked modules provided herein. In a preferred embodiment in accordance with the invention, a form standard is disposed between the flex circuitry and the IC package over which a portion of the flex circuitry is laid. The form standard provides a physical form that allows many of the varying package sizes found in the broad family of CSP packages to be used to advantage while employing a standard connective flex circuitry design. In a preferred embodiment, the form standard will be devised of heat transference material such as copper to improve thermal performance.
    Type: Application
    Filed: October 29, 2004
    Publication date: March 31, 2005
    Inventors: Russell Rapport, James Cady, James Wilder, David Roper, James Wehrly, Jeff Buchle
  • Publication number: 20050062144
    Abstract: The present invention stacks chip scale-packaged integrated circuits (CSPs) into modules that conserve PWB or other board surface area. In another aspect, the invention provides a lower capacitance memory expansion addressing system and method and preferably with the CSP stacked modules provided herein. In a preferred embodiment in accordance with the invention, a form standard is disposed between the flex circuitry and the IC package over which a portion of the flex circuitry is laid. The form standard provides a physical form that allows many of the varying package sizes found in the broad family of CSP packages to be used to advantage while employing a standard connective flex circuitry design. In a preferred embodiment, the form standard will be devised of heat transference material such as copper to improve thermal performance.
    Type: Application
    Filed: October 12, 2004
    Publication date: March 24, 2005
    Inventors: Russell Rapport, James Cady, James Wilder, David Roper, James Wehrly, Jeff Buchle
  • Publication number: 20050057911
    Abstract: The present invention stacks integrated circuits (ICs) into modules that conserve PWB or other board surface area. In another aspect, the invention provides a lower capacitance memory expansion addressing system and method and preferably with the CSP stacked modules provided herein. In a preferred embodiment in accordance with the invention, a form standard provides a physical form that allows many of the varying package sizes found in the broad family of CSP packages to be used to advantage while employing a standard connective flex circuitry design. In a preferred embodiment, the form standard will be devised of heat transference material such as copper to improve thermal performance. In a preferred embodiment of the memory addressing system, a high speed switching system selects a data line associated with each level of a stacked module to reduce the loading effect upon data signals in memory access.
    Type: Application
    Filed: March 19, 2004
    Publication date: March 17, 2005
    Inventors: Russell Rapport, James Cady, James Wilder, David Roper, James Wehrly, Jeff Buchle
  • Publication number: 20050018412
    Abstract: The present invention stacks integrated circuits into modules that conserve board surface area. In a two-high stack or module devised in accordance with a preferred embodiment of the present invention, a pair of integrated circuits is stacked, with one integrated circuit above the other. The two integrated circuits are connected with a pair of flexible circuit structures. Each of the pair of flexible circuit structures is partially wrapped about a respective opposite lateral edge of the lower integrated circuit of the module. The flex circuit pair connects the upper and lower integrated circuits and provides a thermal and electrical path connection path between the module and its application environment. The module has a ballout pattern with a different pitch and/or supplemental module contacts devised to allow combined signaling to the integrated circuits through contacts having a desired ballout footprint.
    Type: Application
    Filed: August 9, 2004
    Publication date: January 27, 2005
    Inventors: David Roper, James Cady, James Wilder, James Wehrly, Jeff Buchle, Julian Dowden
  • Publication number: 20040245615
    Abstract: With the use of stacked modules, a system and method for point to point addressing of multiple integrated memory circuits is provided. A single memory expansion board is populated with stacked modules of integrated circuits. The single memory expansion board is located at the terminus of a transmission line, thus, effectively placing at a relative single point in the addressing system, added memory capacity that would otherwise have required multiple memory expansion boards and, consequently, a longer bus. Therefore, signal degradation issues are mitigated and the system has improved tolerance for higher signal speeds with added memory capacity. In a preferred embodiment, a four DIMM socket memory access bus that does not employ stacking is replaced with a single DIMM socket bus that supports stacking up to four high on a single DIMM.
    Type: Application
    Filed: July 21, 2003
    Publication date: December 9, 2004
    Applicant: Staktek Group, L.P.
    Inventors: James W. Cady, Russell Rapport, Julian Partridge, James Douglas Wehrly, James Wilder, David L. Roper, Jeff Buchle