Patents by Inventor Jeff Illgner

Jeff Illgner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10382083
    Abstract: An e-band transceiver includes a transmitter circuit and a receiver circuit. The transmitter circuit includes a surface mounted technology (SMT) module on which is mounted a silicon-germanium (SiGe) bipolar plus CMOS (BiCMOS) converter, a gallium arsenide (GaAs) pseudomorphic high-electron-mobility transistor (pHEMT) output amplifier coupled to the SiGe BiCMOS converter, and a microstrip/waveguide interface coupled to the GaAs pHEMT output amplifier. The receiver circuit of the e-band transceiver includes a receiver-side SMT module on which is mounted a receiver-side SiGe BiCMOS converter, a GaAs pHEMT low noise amplifier coupled to the receiver-side SiGe BiCMOS converter, and a receiver-side microstrip/waveguide interface coupled to the receiver-side GaAs pHEMT low noise amplifier.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: August 13, 2019
    Assignee: INTEGRATED DEVICE TECHNOLOGY, INC.
    Inventors: Andrea Betti-Berutto, Sushil Kumar, Shawn Parker, Jonathan L. Kennedy, Christopher Saint, Michael Shaw, James Little, Jeff Illgner
  • Publication number: 20180375543
    Abstract: An e-band transceiver includes a transmitter circuit and a receiver circuit. The transmitter circuit includes a surface mounted technology (SMT) module on which is mounted a silicon-germanium (SiGe) bipolar plus CMOS (BiCMOS) converter, a gallium arsenide (GaAs) pseudomorphic high-electron-mobility transistor (pHEMT) output amplifier coupled to the SiGe BiCMOS converter, and a microstrip/waveguide interface coupled to the GaAs pHEMT output amplifer. The receiver circuit of the e-band transceiver includes a receiver-side SMT module on which is mounted a receiver-side SiGe BiCMOS converter, a GaAs pHEMT low noise amplifier coupled to the receiver-side SiGe BiCMOS converter, and a receiver-side microstrip/waveguide interface coupled to the receiver-side GaAs pHEMT low noise amplifier.
    Type: Application
    Filed: August 30, 2018
    Publication date: December 27, 2018
    Inventors: Andrea BETTI-BERUTTO, Sushil KUMAR, Shawn PARKER, Jonathan L. Kennedy, Christopher Saint, Michael Shaw, James Little, Jeff Illgner
  • Patent number: 10075207
    Abstract: An e-band transceiver includes a transmitter circuit and a receiver circuit. The transmitter circuit includes a surface mounted technology (SMT) module on which is mounted a silicon-germanium (SiGe) bipolar plus CMOS (BiCMOS) converter, a gallium arsenide (GaAs) pseudomorphic high-electron-mobility transistor (pHEMT) output amplifier coupled to the SiGe BiCMOS converter, and a microstrip/waveguide interface coupled to the GaAs pHEMT output amplifier. The receiver circuit of the e-band transceiver includes a receiver-side SMT module on which is mounted a receiver-side SiGe BiCMOS converter, a GaAs pHEMT low noise amplifier coupled to the receiver-side SiGe BiCMOS converter, and a receiver-side microstrip/waveguide interface coupled to the receiver-side GaAs pHEMT low noise amplifier.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: September 11, 2018
    Assignee: INTEGRATED DEVICE TECHNOLOGY, INC.
    Inventors: Andrea Betti-Berutto, Sushil Kumar, Shawn Parker, Jonathan L. Kennedy, Christopher Saint, Michael Shaw, James Little, Jeff Illgner
  • Publication number: 20160323008
    Abstract: An e-band transceiver includes a transmitter circuit and a receiver circuit. The transmitter circuit includes a surface mounted technology (SMT) module on which is mounted a silicon-germanium (SiGe) bipolar plus CMOS (BiCMOS) converter, a gallium arsenide (GaAs) pseudomorphic high-electron-mobility transistor (pHEMT) output amplifier coupled to the SiGe BiCMOS converter, and a microstrip/waveguide interface coupled to the GaAs pHEMT output amplifer. The receiver circuit of the e-band transceiver includes a receiver-side SMT module on which is mounted a receiver-side SiGe BiCMOS converter, a GaAs pHEMT low noise amplifier coupled to the receiver-side SiGe BiCMOS converter, and a receiver-side microstrip/waveguide interface coupled to the receiver-side GaAs pHEMT low noise amplifier.
    Type: Application
    Filed: May 2, 2016
    Publication date: November 3, 2016
    Inventors: Andrea Betti-Berutto, Sushil Kumar, Shawn Parker, Jonathan L. Kennedy, Christopher Saint, Michael Shaw, James Little, Jeff Illgner
  • Patent number: 8860481
    Abstract: A method includes providing an active circuit element in a feedback path between an output node and a bypass node of a charge pump of a Phase Locked Loop (PLL). The bypass node is a node to which a charge current or a discharge current is steered to by the charge pump when neither charging the output node nor discharging the output node is required. The method also includes servoing the bypass node to the output node through the active circuit element in the feedback path to maintain a same voltage at the output node and the bypass node when neither the charging of the output node nor the discharging of the output node is required.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: October 14, 2014
    Assignee: GigOptix, Inc.
    Inventor: Jeff Illgner