Patents by Inventor Jeff Schneider

Jeff Schneider has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11953901
    Abstract: An autonomous vehicle includes one or more sensors for detecting an object in an environment surrounding the autonomous vehicle and a vehicle computing system comprising one or more processors receiving canonical route data associated with at least one canonical route, and controlling travel of the autonomous vehicle based on sensor data from the one or more sensors and the canonical route data associated with the at least one canonical route. The at least one canonical route comprises at least one roadway connected with another roadway in a plurality of roadways in a geographic location that satisfies at least one route optimization function derived based on trip data associated with one or more traversals of the plurality of roadways in a geographic location by one or more autonomous vehicles.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: April 9, 2024
    Assignee: UATC, LLC
    Inventors: Andrew Raymond Sturges, Alexander Edward Chao, Yifang Liu, Xiaodong Zhang, Richard Brian Donnelly, Bryan John Nagy, Jeff Schneider, Collin Christopher Otis
  • Patent number: 11918650
    Abstract: The present invention provides an improved pharmaceutical composition for storage and administration comprising (a) a bispecific antibody construct comprising a first domain binding to a target cell surface antigen and a second domain binding to a second antigen, wherein the bispecific antibody construct is present at a concentration in the range from about 0.5 ?g/ml to 20 mg/ml, (b) a preservative at a concentration effective to inhibit the growth of microbes, and (c) a diluent wherein bispecific antibody construct is stable and recoverable.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: March 5, 2024
    Assignee: AMGEN INC.
    Inventors: Jeff Abel, Lingwen Cui, Devrishi Goswami, Joon Huh, Bharadwaj Jagannathan, Sekhar Kanapuram, Arnold McAuley, Michael Schneider, Ananthakrishnan G. Sethuraman, Michael Treuheit, Jun Zhang
  • Patent number: 11904520
    Abstract: Systems and methods control the operation of a blow molder. An indication of a crystallinity of at least one container produced by the blow molder may be received along with a material distribution of the at least one container. A model may be executed, where the model relates a plurality of blow molder input parameters to the indication of crystallinity and the material distribution and where a result of the model comprises changes to at least one of the plurality of blow molder input parameters to move the material distribution towards a baseline material distribution and the crystallinity towards a baseline crystallinity. The changes to the at least one of the plurality of blow molder input parameters may be implemented.
    Type: Grant
    Filed: October 26, 2022
    Date of Patent: February 20, 2024
    Assignee: AGR International, Inc.
    Inventors: Georg V. Wolfe, Jeff Schneider, William E. Schmidt
  • Patent number: 11835951
    Abstract: Systems and methods for predicting object motion and controlling autonomous vehicles are provided. In one example embodiment, a computer implemented method includes obtaining state data indicative of at least a current or a past state of an object that is within a surrounding environment of an autonomous vehicle. The method includes obtaining data associated with a geographic area in which the object is located. The method includes generating a combined data set associated with the object based at least in part on a fusion of the state data and the data associated with the geographic area in which the object is located. The method includes obtaining data indicative of a machine-learned model. The method includes inputting the combined data set into the machine-learned model. The method includes receiving an output from the machine-learned model. The output can be indicative of a plurality of predicted trajectories of the object.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: December 5, 2023
    Assignee: UATC, LLC
    Inventors: Nemanja Djuric, Vladan Radosavljevic, Thi Duong Nguyen, Tsung-Han Lin, Jeff Schneider, Henggang Cui, Fang-Chieh Chou, Tzu-Kuo Huang
  • Publication number: 20230241831
    Abstract: Systems and methods control the operation of a blow molder. An indication of a crystallinity of at least one container produced by the blow molder may be received along with a material distribution of the at least one container. A model may be executed, where the model relates a plurality of blow molder input parameters to the indication of crystallinity and the material distribution and where a result of the model comprises changes to at least one of the plurality of blow molder input parameters to move the material distribution towards a baseline material distribution and the crystallinity towards a baseline crystallinity. The changes to the at least one of the plurality of blow molder input parameters may be implemented.
    Type: Application
    Filed: March 30, 2023
    Publication date: August 3, 2023
    Inventors: Georg V. Wolfe, Jeff Schneider, William E. Schmidt
  • Patent number: 11635764
    Abstract: Systems, methods, tangible non-transitory computer-readable media, and devices associated with the motion prediction and operation of a device including a vehicle are provided. For example, a vehicle computing system can access state data including information associated with locations and characteristics of objects over a plurality of time intervals. Trajectories of the objects at subsequent time intervals following the plurality of time intervals can be determined based on the state data and a machine-learned tracking and kinematics model. The trajectories of the objects can include predicted locations of the objects at subsequent time intervals that follow the plurality of time intervals. Further, the predicted locations of the objects can be based on physical constraints of the objects. Furthermore, indications, which can include visual indications, can be generated based on the predicted locations of the objects at the subsequent time intervals.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: April 25, 2023
    Assignee: UATC, LLC.
    Inventors: Nemanja Djuric, Henggang Cui, Thi Duong Nguyen, Fang-Chieh Chou, Tsung-Han Lin, Jeff Schneider, David McAllister Bradley
  • Publication number: 20230084114
    Abstract: Systems and methods control the operation of a blow molder. An indication of a crystallinity of at least one container produced by the blow molder may be received along with a material distribution of the at least one container. A model may be executed, where the model relates a plurality of blow molder input parameters to the indication of crystallinity and the material distribution and where a result of the model comprises changes to at least one of the plurality of blow molder input parameters to move the material distribution towards a baseline material distribution and the crystallinity towards a baseline crystallinity. The changes to the at least one of the plurality of blow molder input parameters may be implemented.
    Type: Application
    Filed: October 26, 2022
    Publication date: March 16, 2023
    Inventors: Georg V. WOLFE, Jeff SCHNEIDER, William E. SCHMIDT
  • Patent number: 11597135
    Abstract: Systems and methods control the operation of a blow molder. An indication of a crystallinity of at least one container produced by the blow molder may be received along with a material distribution of the at least one container. A model may be executed, where the model relates a plurality of blow molder input parameters to the indication of crystallinity and the material distribution and where a result of the model comprises changes to at least one of the plurality of blow molder input parameters to move the material distribution towards a baseline material distribution and the crystallinity towards a baseline crystallinity. The changes to the at least one of the plurality of blow molder input parameters may be implemented.
    Type: Grant
    Filed: October 6, 2021
    Date of Patent: March 7, 2023
    Assignee: AGR International, Inc.
    Inventors: Georg V. Wolfe, Jeff Schneider, William E. Schmidt
  • Publication number: 20220024110
    Abstract: Systems and methods control the operation of a blow molder. An indication of a crystallinity of at least one container produced by the blow molder may be received along with a material distribution of the at least one container. A model may be executed, where the model relates a plurality of blow molder input parameters to the indication of crystallinity and the material distribution and where a result of the model comprises changes to at least one of the plurality of blow molder input parameters to move the material distribution towards a baseline material distribution and the crystallinity towards a baseline crystallinity. The changes to the at least one of the plurality of blow molder input parameters may be implemented.
    Type: Application
    Filed: October 6, 2021
    Publication date: January 27, 2022
    Applicant: AGR International, Inc.
    Inventors: Georg V. WOLFE, Jeff SCHNEIDER, William E. SCHMIDT
  • Publication number: 20210397185
    Abstract: Systems and methods for predicting object motion and controlling autonomous vehicles are provided. In one example embodiment, a computer implemented method includes obtaining state data indicative of at least a current or a past state of an object that is within a surrounding environment of an autonomous vehicle. The method includes obtaining data associated with a geographic area in which the object is located. The method includes generating a combined data set associated with the object based at least in part on a fusion of the state data and the data associated with the geographic area in which the object is located. The method includes obtaining data indicative of a machine-learned model. The method includes inputting the combined data set into the machine-learned model. The method includes receiving an output from the machine-learned model. The output can be indicative of a plurality of predicted trajectories of the object.
    Type: Application
    Filed: September 3, 2021
    Publication date: December 23, 2021
    Inventors: Nemanja Djuric, Vladan Radosavljevic, Thi Duong Nguyen, Tsung-Han Lin, Jeff Schneider, Henggang Cui, Fang-Chieh Chou, Tzu-Kuo Huang
  • Patent number: 11155018
    Abstract: Systems and methods for controlling the operation of a blow molder are disclosed. An indication of a crystallinity of at least one container produced by the blow molder may be received along with a material distribution of the at least one container. A model may be executed, where the model relates a plurality of blow molder input parameters to the indication of crystallinity and the material distribution and where a result of the model comprises changes to at least one of the plurality of blow molder input parameters to move the material distribution towards a baseline material distribution and the crystallinity towards a baseline crystallinity. The changes to the at least one of the plurality of blow molder input parameters may be implemented.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: October 26, 2021
    Assignee: AGR INTERNATIONAL, INC.
    Inventors: Georg V. Wolfe, Jeff Schneider, William E. Schmidt
  • Patent number: 11112796
    Abstract: Systems and methods for predicting object motion and controlling autonomous vehicles are provided. In one example embodiment, a computer implemented method includes obtaining state data indicative of at least a current or a past state of an object that is within a surrounding environment of an autonomous vehicle. The method includes obtaining data associated with a geographic area in which the object is located. The method includes generating a combined data set associated with the object based at least in part on a fusion of the state data and the data associated with the geographic area in which the object is located. The method includes obtaining data indicative of a machine-learned model. The method includes inputting the combined data set into the machine-learned model. The method includes receiving an output from the machine-learned model. The output can be indicative of a plurality of predicted trajectories of the object.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: September 7, 2021
    Assignee: UATC, LLC
    Inventors: Nemanja Djuric, Vladan Radosavljevic, Thi Duong Nguyen, Tsung-Han Lin, Jeff Schneider, Henggang Cui, Fang-Chieh Chou, Tzu-Kuo Huang
  • Publication number: 20200272160
    Abstract: Systems, methods, tangible non-transitory computer-readable media, and devices associated with the motion prediction and operation of a device including a vehicle are provided. For example, a vehicle computing system can access state data including information associated with locations and characteristics of objects over a plurality of time intervals. Trajectories of the objects at subsequent time intervals following the plurality of time intervals can be determined based on the state data and a machine-learned tracking and kinematics model. The trajectories of the objects can include predicted locations of the objects at subsequent time intervals that follow the plurality of time intervals. Further, the predicted locations of the objects can be based on physical constraints of the objects. Furthermore, indications, which can include visual indications, can be generated based on the predicted locations of the objects at the subsequent time intervals.
    Type: Application
    Filed: July 9, 2019
    Publication date: August 27, 2020
    Inventors: Nemanja Djuric, Henggang Cui, Thi Duong Nguyen, Fang-Chieh Chou, Tsung-Han Lin, Jeff Schneider, David McAllister Bradley
  • Publication number: 20200264613
    Abstract: An autonomous vehicle includes one or more sensors for detecting an object in an environment surrounding the autonomous vehicle and a vehicle computing system comprising one or more processors receiving canonical route data associated with at least one canonical route, and controlling travel of the autonomous vehicle based on sensor data from the one or more sensors and the canonical route data associated with the at least one canonical route. The at least one canonical route comprises at least one roadway connected with another roadway in a plurality of roadways in a geographic location that satisfies at least one route optimization function derived based on trip data associated with one or more traversals of the plurality of roadways in a geographic location by one or more autonomous vehicles.
    Type: Application
    Filed: May 5, 2020
    Publication date: August 20, 2020
    Inventors: Andrew Raymond Sturges, Alexander Edward Chao, Yifang Liu, Xiaodong Zhang, Richard Brian Donnelly, Bryan John Nagy, Jeff Schneider, Collin Christopher Otis
  • Patent number: 10656657
    Abstract: Systems and methods for predicting object motion and controlling autonomous vehicles are provided. In one example embodiment, a computer implemented method includes obtaining state data indicative of at least a current or a past state of an object that is within a surrounding environment of an autonomous vehicle. The method includes obtaining data associated with a geographic area in which the object is located. The method includes generating a combined data set associated with the object based at least in part on a fusion of the state data and the data associated with the geographic area in which the object is located. The method includes obtaining data indicative of a machine-learned model. The method includes inputting the combined data set into the machine-learned model. The method includes receiving an output from the machine-learned model. The output can be indicative of a predicted trajectory of the object.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: May 19, 2020
    Assignee: UATC, LLC
    Inventors: Nemanja Djuric, Vladan Radosavljevic, Thi Duong Nguyen, Tsung-Han Lin, Jeff Schneider
  • Patent number: 10656645
    Abstract: A method for determining a canonical route includes receiving trip data associated with one or more traversals of a plurality of roadways in a geographic location by one or more autonomous vehicles. The method includes generating at least one canonical route based on the trip data, wherein the at least one canonical route includes at least one roadway connected with another roadway in the plurality of roadways. The method includes providing canonical route data associated with the at least one canonical route to an autonomous vehicle for controlling travel of the autonomous vehicle on the at least one canonical route.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: May 19, 2020
    Assignee: UATC, LLC
    Inventors: Andrew Raymond Sturges, Alexander Edward Chao, Yifang Liu, Xiaodong Zhang, Richard Brian Donnelly, Bryan John Nagy, Jeff Schneider, Collin Christopher Otis
  • Patent number: 10579063
    Abstract: The present disclosure provides systems and methods for predicting the future locations of objects that are perceived by autonomous vehicles. An autonomous vehicle can include a prediction system that, for each object perceived by the autonomous vehicle, generates one or more potential goals, selects one or more of the potential goals, and develops one or more trajectories by which the object can achieve the one or more selected goals. The prediction systems and methods described herein can include or leverage one or more machine-learned models that assist in predicting the future locations of the objects. As an example, in some implementations, the prediction system can include a machine-learned static object classifier, a machine-learned goal scoring model, a machine-learned trajectory development model, a machine-learned ballistic quality classifier, and/or other machine-learned models. The use of machine-learned models can improve the speed, quality, and/or accuracy of the generated predictions.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: March 3, 2020
    Assignee: UATC, LLC
    Inventors: Galen Clark Haynes, Ian Dewancker, Nemanja Djuric, Tzu-Kuo Huang, Tian Lan, Tsung-Han Lin, Micol Marchetti-Bowick, Vladan Radosavljevic, Jeff Schneider, Alexander David Styler, Neil Traft, Huahua Wang, Anthony Joseph Stentz
  • Publication number: 20190152123
    Abstract: Systems and methods for controlling the operation of a blow molder are disclosed. An indication of a crystallinity of at least one container produced by the blow molder may be received along with a material distribution of the at least one container. A model may be executed, where the model relates a plurality of blow molder input parameters to the indication of crystallinity and the material distribution and where a result of the model comprises changes to at least one of the plurality of blow molder input parameters to move the material distribution towards a baseline material distribution and the crystallinity towards a baseline crystallinity. The changes to the at least one of the plurality of blow molder input parameters may be implemented.
    Type: Application
    Filed: January 11, 2019
    Publication date: May 23, 2019
    Inventors: Georg V. Wolfe, Jeff Schneider, William E. Schmidt
  • Publication number: 20190094858
    Abstract: A method for predicting one or more parking locations includes receiving feature map data associated with a feature map, the feature map comprises a plurality of elements of a matrix, each element of the matrix comprises the feature map data, and the feature map data is associated with one or more features of a road. The method includes processing the feature map data to produce artificial neuron data associated with one or more artificial neurons of one or more convolution layers. The method includes generating a prediction score for each element of the feature map based on the artificial neuron data, wherein the prediction score comprises a prediction of whether each element of the feature map comprises a parking location. The method includes outputting map data associated with a map, the map data is based on the one or more prediction scores associated with each element of the feature map.
    Type: Application
    Filed: October 20, 2017
    Publication date: March 28, 2019
    Inventors: Vladan Radosavljevic, Jeff Schneider, Alexander Edward Chao
  • Publication number: 20190049970
    Abstract: Systems and methods for predicting object motion and controlling autonomous vehicles are provided. In one example embodiment, a computer implemented method includes obtaining state data indicative of at least a current or a past state of an object that is within a surrounding environment of an autonomous vehicle. The method includes obtaining data associated with a geographic area in which the object is located. The method includes generating a combined data set associated with the object based at least in part on a fusion of the state data and the data associated with the geographic area in which the object is located. The method includes obtaining data indicative of a machine-learned model. The method includes inputting the combined data set into the machine-learned model. The method includes receiving an output from the machine-learned model. The output can be indicative of a plurality of predicted trajectories of the object.
    Type: Application
    Filed: September 5, 2018
    Publication date: February 14, 2019
    Inventors: Nemanja Djuric, Vladan Radosavljevic, Thi Duong Nguyen, Tsung-Han Lin, Jeff Schneider, Henggang Cui, Fang-Chieh Chou, Tzu-Kuo Huang