Patents by Inventor Jefferson D. Lexa

Jefferson D. Lexa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11422172
    Abstract: A coaxial power sensor assembly configured to provide a broadband matched termination utilizing coplanar waveguide topology while simultaneously providing a source of heat energy for a surface mount chip thermistor element to measure applied input power. The coaxial thermal power sensor is comprised of a thin film resistive device on a dielectric substrate and a surface mount chip thermistor element placed in close planar proximity to the resistive device in order to maximize the heat flux via a closely coupled thermal path to the thermistor and alter the bias current through the resistance to be measured. The power sensor is intended to function from DC to 70 GHz, but the same should not be construed as a limitation.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: August 23, 2022
    Inventors: Jefferson D. Lexa, Andrew S. Brush, Bernd Lecjaks
  • Patent number: 11333686
    Abstract: An in-line suspended non-directional power sensor coupling configuration situated within a high frequency transmission line housing that allows non-directional current and sampling voltage elements to all be produced simultaneously on one or more double sided printed circuit boards (PCB). The power sensor coupling allows for repeatable calibrated coupling responses across a much wider frequency range with a single PCB assembly, as opposed to the need to cover equivalently sized frequency ranges with multiple individually fabricated coupling element assemblies.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: May 17, 2022
    Inventor: Jefferson D. Lexa
  • Publication number: 20210116479
    Abstract: An in-line suspended non-directional power sensor coupling configuration situated within a high frequency transmission line housing that allows non-directional current and sampling voltage elements to all be produced simultaneously on one or more double sided printed circuit boards (PCB). The power sensor coupling allows for repeatable calibrated coupling responses across a much wider frequency range with a single PCB assembly, as opposed to the need to cover equivalently sized frequency ranges with multiple individually fabricated coupling element assemblies.
    Type: Application
    Filed: October 21, 2019
    Publication date: April 22, 2021
    Applicant: Tegam, Inc.
    Inventor: Jefferson D. Lexa
  • Patent number: 10892533
    Abstract: A power sensor system, assembly and method for use as a power sensor standard in the 50 to 75 GHz frequency range. The power sensing system comprises a housing comprising a dual ridged waveguide impedance transformer, and a resistive component attachable to a back side of the housing. The resistive component comprises a terminating element electrically, but not thermally isolated from a sensing element. The sensing element operates at a constant resistance and is perpendicularly oriented to the terminating element.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: January 12, 2021
    Inventor: Jefferson D. Lexa
  • Publication number: 20200341038
    Abstract: A coaxial power sensor assembly configured to provide a broadband matched termination utilizing coplanar waveguide topology while simultaneously providing a source of heat energy for a surface mount chip thermistor element to measure applied input power. The coaxial thermal power sensor is comprised of a thin film resistive device on a dielectric substrate and a surface mount chip thermistor element placed in close planar proximity to the resistive device in order to maximize the heat flux via a closely coupled thermal path to the thermistor and alter the bias current through the resistance to be measured. The power sensor is intended to function from DC to 70 GHz, but the same should not be construed as a limitation.
    Type: Application
    Filed: November 15, 2019
    Publication date: October 29, 2020
    Applicant: Tegam, Inc.
    Inventors: Jefferson D. Lexa, Andrew S. Brush, Bernd Lecjaks
  • Publication number: 20200052358
    Abstract: A power sensor system, assembly and method for use as a power sensor standard in the 50 to 75 GHz frequency range. The power sensing system comprises a housing comprising a dual ridged waveguide impedance transformer, and a resistive component attachable to a back side of the housing. The resistive component comprises a terminating element electrically, but not thermally isolated from a sensing element. The sensing element operates at a constant resistance and is perpendicularly oriented to the terminating element.
    Type: Application
    Filed: August 8, 2018
    Publication date: February 13, 2020
    Applicant: Tegam, Inc.
    Inventor: Jefferson D. Lexa
  • Patent number: 8610069
    Abstract: A dual-coplanar sensor architecture is constructed by launching from coaxial airline to a unique arrangement of coplanar waveguides, arranged symmetrically on both sides of a thin dielectric substrate. The center conductor of the coaxial airline makes electrical contact with the middle conductor of both the top and bottom coplanar waveguides. The characteristic impedance of the top and bottom coplanar waveguides is designed to be approximately twice the characteristic impedance of the coaxial airline, such that the parallel combination of the two coplanar waveguides is the characteristic impedance of the coaxial airline. Further, steps in both the ground planes and center conductor at the point of transition from coaxial to coplanar are used to tune the launch and minimize reflection at the launch.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: December 17, 2013
    Assignee: Tegam, Inc.
    Inventors: John D. Swank, Jefferson D. Lexa, Andrew S. Brush
  • Patent number: 8558556
    Abstract: A co-axial microwave bolometer architecture is disclosed that uses thick-film processes to construct very small thermistors on a substrate that is selected for low heat transfer. Thermal isolation is further enhanced by making the planar electrodes from a metal with lower heat transfer than typical electrical metals. Furthermore, a resistor with very strong temperature coefficient (thermistor), is arranged such that connecting metal paths are arranged axially, and as generally flat, thin, planar conductors. Additionally, the substrate of the thermistor is selected to have very low conductivity of heat, so the thermistor element itself is well isolated thermally from its surroundings.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: October 15, 2013
    Assignee: Tegam, Inc.
    Inventors: Jefferson D. Lexa, Andrew S. Brush, John D. Swank
  • Publication number: 20110168893
    Abstract: A dual-coplanar sensor architecture is constructed by launching from coaxial airline to a unique arrangement of coplanar waveguides, arranged symmetrically on both sides of a thin dielectric substrate. The center conductor of the coaxial airline makes electrical contact with the middle conductor of both the top and bottom coplanar waveguides. The characteristic impedance of the top and bottom coplanar waveguides is designed to be approximately twice the characteristic impedance of the coaxial airline, such that the parallel combination of the two coplanar waveguides is the characteristic impedance of the coaxial airline. Further, steps in both the ground planes and center conductor at the point of transition from coaxial to coplanar are used to tune the launch and minimize reflection at the launch.
    Type: Application
    Filed: January 3, 2011
    Publication date: July 14, 2011
    Applicant: TEGAM, INC.
    Inventors: John D. Swank, Jefferson D. Lexa, Andrew S. Brush
  • Publication number: 20110169592
    Abstract: A co-axial microwave bolometer architecture is disclosed that uses thick-film processes to construct very small thermistors on a substrate that is selected for low heat transfer. Thermal isolation is further enhanced by making the planar electrodes from a metal with lower heat transfer than typical electrical metals. Furthermore, a resistor with very strong temperature coefficient (thermistor), is arranged such that connecting metal paths are arranged axially, and as generally flat, thin, planar conductors. Additionally, the substrate of the thermistor is selected to have very low conductivity of heat, so the thermistor element itself is well isolated thermally from its surroundings.
    Type: Application
    Filed: January 3, 2011
    Publication date: July 14, 2011
    Applicant: TEGAM, INC.
    Inventors: Jefferson D. Lexa, Andrew S. Brush, John D. Swank
  • Patent number: 6094107
    Abstract: A termination for a coaxial transmission line wherein an elongated central conductor is located in an enclosure or housing and is surrounded by a plurality of elongated resistor tubes. The central conductor is connected to the inner conductor of the transmission line and the resistor elements are connected to the outer conductor. The housing defines an inner flow chamber and a plurality of outer flow passages surrounding the inner flow chamber with the upper ends thereof communicating with the upper end of the inner flow chamber. A centrifugal blower is located at the bottom of each of the outer flow passages to generate an air flow upwardly and then through lateral ports into the upper end of the inner flow chamber, whereupon a flow proceeds downwardly in a turbulent vortex through the inner flow chamber to cool the resistor elements.
    Type: Grant
    Filed: September 29, 1998
    Date of Patent: July 25, 2000
    Inventor: Jefferson D. Lexa