Patents by Inventor Jefferson Puerta

Jefferson Puerta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11952592
    Abstract: Organs-on-chips are microfluidic devices for culturing living cells in micrometer sized chambers in order to model physiological functions of tissues and organs. Engineered patterning and continuous fluid flow in these devices has allowed culturing of intestinal cells bearing physiologically relevant features and sustained exposure to bacteria while maintaining cellular viability, thereby allowing study of inflammatory bowl diseases. However, existing intestinal cells do not possess all physiologically relevant subtypes, do not possess the repertoire of genetic variations, or allow for study of other important cellular actors such as immune cells. Use of iPSC-derived epithelium, including IBD patient-specific cells, allows for superior disease modeling by capturing the multi-faceted nature of the disease.
    Type: Grant
    Filed: February 23, 2022
    Date of Patent: April 9, 2024
    Assignee: EMULATE, INC.
    Inventors: S. Jordan Kerns, Norman Wen, Carol Lucchesi, Christopher David Hinojosa, Jacob Fraser, Jefferson Puerta, Geraldine Hamilton, Robert Barrett, Clive Svendsen, Daniel Levner, Stephen R Targan, Michael Workman, Dhruv Sareen, Uthra Rajamani, Magdalena Kasendra
  • Patent number: 11654399
    Abstract: A method for micro-molding a polymeric membrane and including pouring a predetermined volume of curable polymer unto a micro-fabricated mold having a post array with pillars, and overlaying the polymer with a support substrate. A spacer, such as a rubber spacer, is placed in contact with the support substrate and a force is applied to an exposed side of the spacer to compress the support substrate and the polymer together. While applying the force, the polymer is cured on the mold for a predetermined time period and at a predetermined temperature to form a polymeric membrane having a pore array with a plurality of pores corresponding to the plurality of pillars of the post array. The polymeric membrane is removed from the support substrate.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: May 23, 2023
    Assignee: President and Fellows of Harvard College
    Inventors: David James Coon, Tiama Hamkins-Indik, Donald E. Ingber, Miles Ingram, Daniel Levner, Richard Novak, Jefferson Puerta, Daniel E. Shea, Josiah Sliz, Norman Wen
  • Publication number: 20220334139
    Abstract: The present invention is related to the field of microfluidics and compound distribution within microfluidic devices and their associated systems. In one embodiment, present invention aims to solve the problem of molecule and compound absorbency into the materials making up laboratory equipment, microfluidic devices and their related infrastructure, without unduly restricting gas transport within microfluidic devices.
    Type: Application
    Filed: June 7, 2022
    Publication date: October 20, 2022
    Inventors: Josiah Sliz, Daniel Levner, Brian Zuckerman, Norman Wen, Jonathan Rubins, Tanvi Shroff, Christopher David Hinojosa, Grace Ahn, Victor Antontsev, Jefferson Puerta, David Conegliano, S. Jordan Kerns
  • Publication number: 20220282221
    Abstract: Organs-on-chips are microfluidic devices for culturing living cells in micrometer sized chambers in order to model physiological functions of tissues and organs. Engineered patterning and continuous fluid flow in these devices has allowed culturing of intestinal cells bearing physiologically relevant features and sustained exposure to bacteria while maintaining cellular viability, thereby allowing study of inflammatory bowl diseases. However, existing intestinal cells do not possess all physiologically relevant subtypes, do not possess the repertoire of genetic variations, or allow for study of other important cellular actors such as immune cells. Use of iPSC-derived epithelium, including IBD patient-specific cells, allows for superior disease modeling by capturing the multi-faceted nature of the disease.
    Type: Application
    Filed: February 23, 2022
    Publication date: September 8, 2022
    Inventors: S. Jordan Kerns, Norman Wen, Carol Lucchesi, Christopher David Hinojosa, Jacob Fraser, Jefferson Puerta, Geraldine Hamilton, Robert Barrett, Clive Svendsen, Daniel Levner, Stephen R. Targan, Michael Workman, Dhruv Sareen, Uthra Rajamani, Magdalena Kasendra
  • Publication number: 20220155328
    Abstract: The present invention is related to the field of microfluidics and compound distribution within microfluidic devices and their associated systems. In one embodiment, present invention aims to solve the problem of molecule and compound absorbency into the materials making up laboratory equipment, microfluidic devices and their related infrastructure, without unduly restricting gas transport within microfluidic devices.
    Type: Application
    Filed: November 30, 2021
    Publication date: May 19, 2022
    Inventors: JOSIAH SLIZ, Daniel Levner, Brian Zuckerman, Norman Wen, Jonathan Rubins, Tanvi Shroff, Christopher David Hinojosa, Grace Ahn, Victor Antontsev, Jefferson Puerta, David Conegliano, S. Jordan Kerns
  • Patent number: 11326149
    Abstract: Organs-on-chips are microfluidic devices for culturing living cells in micrometer sized chambers in order to model physiological functions of tissues and organs. Engineered patterning and continuous fluid flow in these devices has allowed culturing of intestinal cells bearing physiologically relevant features and sustained exposure to bacteria while maintaining cellular viability, thereby allowing study of inflammatory bowl diseases. However, existing intestinal cells do not possess all physiologically relevant subtypes, do not possess the repertoire of genetic variations, or allow for study of other important cellular actors such as immune cells. Use of iPSC-derived epithelium, including IBD patient-specific cells, allows for superior disease modeling by capturing the multi-faceted nature of the disease.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: May 10, 2022
    Assignee: EMULATE, INC.
    Inventors: S. Jordan Kerns, Norman Wen, Carol Lucchesi, Christopher David Hinojosa, Jacob Fraser, Jefferson Puerta, Geraldine Hamilton, Robert Barrett, Clive Svendsen, Daniel Levner, Stephen R Targan, Michael Workman, Dhruv Sareen, Uthra Rajamani, Magdalena Kasendra
  • Patent number: 11067571
    Abstract: This invention is in the field of surface modification. In particular, the invention relates to the surface modification of microfluidic devices to alter surface hydrophobicity characteristics.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: July 20, 2021
    Assignee: EMULATE, INC.
    Inventors: Daniel Levner, S. Jordan Kerns, Jefferson Puerta
  • Publication number: 20200179928
    Abstract: This invention is in the field of surface modification. In particular, the invention relates to the surface modification of microfluidic devices to alter surface hydrophobicity characteristics.
    Type: Application
    Filed: January 10, 2020
    Publication date: June 11, 2020
    Inventors: Daniel Levner, S. Jordan Kerns, Jefferson Puerta
  • Publication number: 20190031992
    Abstract: Organs-on-chips are microfluidic devices for culturing living cells in micrometer sized chambers in order to model physiological functions of tissues and organs. Engineered patterning and continuous fluid flow in these devices has allowed culturing of intestinal cells bearing physiologically relevant features and sustained exposure to bacteria while maintaining cellular viability, thereby allowing study of inflammatory bowl diseases. However, existing intestinal cells do not possess all physiologically relevant subtypes, do not possess the repertoire of genetic variations, or allow for study of other important cellular actors such as immune cells. Use of iPSC-derived epithelium, including IBD patient-specific cells, allows for superior disease modeling by capturing the multi-faceted nature of the disease.
    Type: Application
    Filed: July 31, 2018
    Publication date: January 31, 2019
    Inventors: S. Jordan Kerns, Norman Wen, Carol Lucchesi, Christopher David Hinojosa, Jacob Fraser, Jefferson Puerta, Geraldine Hamilton, Robert Barrett, Clive Svendsen, Daniel Levner, Stephen R. Targan, Michael Workman, Dhruv Sareen, Uthra Rajamani, Magdalena Kasendra
  • Publication number: 20180071690
    Abstract: A method for micro-molding a polymeric membrane and including pouring a predetermined volume of curable polymer unto a micro-fabricated mold having a post array with pillars, and overlaying the polymer with a support substrate. A spacer, such as a rubber spacer, is placed in contact with the support substrate and a force is applied to an exposed side of the spacer to compress the support substrate and the polymer together. While applying the force, the polymer is cured on the mold for a predetermined time period and at a predetermined temperature to form a polymeric membrane having a pore array with a plurality of pores corresponding to the plurality of pillars of the post array. The polymeric membrane is removed from the support substrate.
    Type: Application
    Filed: March 16, 2016
    Publication date: March 15, 2018
    Inventors: James Coon, Tiama Hamkins-Indik, Donald E. Ingber, Miles Ingram, Daniel Levner, Richard Novak, Jefferson Puerta, Daniel E. Shea, Josiah Sliz, Norman Wen