Patents by Inventor Jeffrey Alderson

Jeffrey Alderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10825440
    Abstract: A method for calibrating an ANC-enabled portable audio device having microphones plays continuously a calibration sound by a calibrated speaker of a test station separate from the device. For each microphone of all the microphones, a microphone calibration value is computed using a comparison of a predetermined level and a measured level of an audio signal transduced by the microphone in response to the continuously-played calibration sound. The calibration is done without using a microphone of the test station. A processing element of the device may be programmed to make the comparison and computation. The processing element also causes a speaker of the device to generate a second calibration sound, measures a second level while the computed calibration value is applied to one of microphones (e.g., error microphone), and computes a calibration value for the device speaker using a comparison of a predetermined level and the second level.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: November 3, 2020
    Inventors: Jeffrey Alderson, Ning Li, Ronald Coapstick
  • Patent number: 10810990
    Abstract: An active noise cancellation (ANC) system including a selectable decimation rate decimator that receives an oversampled digital input and has an input that selects the decimation rate, a filter that receives an output of the decimator, and a selectable interpolation rate interpolator that receives an output of the filter and has an input that selects the interpolation rate. The selectable decimation rate decimator and the selectable interpolation rate interpolator operate to provide a selectable sample rate for the filter based on the selected decimation and interpolation rates. The filter may be an anti-noise filter, feedback filter, and/or a filter that models an acoustic transfer function of the ANC system. Rate selection may be static, or dynamically controlled based on battery or ambient noise level. A ratio of the decimation rate and the interpolation rate is fixed independent of the dynamically controlled decimation and interpolation rates.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: October 20, 2020
    Assignee: Cirrus Logic, Inc.
    Inventors: Gabriel Vogel, Jeffrey Alderson, Ryan A. Hellman, Nitin Kwatra
  • Publication number: 20200005759
    Abstract: A method for calibrating an ANC-enabled portable audio device having microphones plays continuously a calibration sound by a calibrated speaker of a test station separate from the device. For each microphone of all the microphones, a microphone calibration value is computed using a comparison of a predetermined level and a measured level of an audio signal transduced by the microphone in response to the continuously-played calibration sound. The calibration is done without using a microphone of the test station. A processing element of the device may be programmed to make the comparison and computation. The processing element also causes a speaker of the device to generate a second calibration sound, measures a second level while the computed calibration value is applied to one of microphones (e.g., error microphone), and computes a calibration value for the device speaker using a comparison of a predetermined level and the second level.
    Type: Application
    Filed: January 31, 2019
    Publication date: January 2, 2020
    Inventors: JEFFREY ALDERSON, NING LI, RONALD COAPSTICK
  • Patent number: 10468048
    Abstract: A personal audio device, such as a wireless telephone, includes noise canceling circuit that adaptively generates an anti-noise signal from a reference microphone signal and injects the anti-noise signal into the speaker or other transducer output to cause cancellation of ambient audio sounds. An error microphone may also be provided proximate the speaker to estimate an electro-acoustical path from the noise canceling circuit through the transducer. A processing circuit uses the reference and/or error microphone, optionally along with a microphone provided for capturing near-end speech, to determine whether one of the reference or error microphones is obstructed by comparing their received signal content and takes action to avoid generation of erroneous anti-noise.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: November 5, 2019
    Assignee: CIRRUS LOGIC, INC.
    Inventors: Nitin Kwatra, Jeffrey Alderson, Jon D. Hendrix
  • Publication number: 20190237058
    Abstract: An active noise cancellation (ANC) system including a selectable decimation rate decimator that receives an oversampled digital input and has an input that selects the decimation rate, a filter that receives an output of the decimator, and a selectable interpolation rate interpolator that receives an output of the filter and has an input that selects the interpolation rate. The selectable decimation rate decimator and the selectable interpolation rate interpolator operate to provide a selectable sample rate for the filter based on the selected decimation and interpolation rates. The filter may be an anti-noise filter, feedback filter, and/or a filter that models an acoustic transfer function of the ANC system. Rate selection may be static, or dynamically controlled based on battery or ambient noise level. A ratio of the decimation rate and the interpolation rate is fixed independent of the dynamically controlled decimation and interpolation rates.
    Type: Application
    Filed: January 30, 2019
    Publication date: August 1, 2019
    Inventors: GABRIEL VOGEL, JEFFREY ALDERSON, RYAN A. HELLMAN, NITIN KWATRA
  • Patent number: 10249284
    Abstract: A personal audio device, such as a wireless telephone, includes noise canceling that adaptively generates an anti-noise signal from a reference microphone signal and injects the anti-noise signal into the speaker or other transducer output to cause cancellation of ambient audio sounds. An error microphone is provided proximate the speaker to measure the output of the transducer in order to control the adaptation of the anti-noise signal and to estimate an electro-acoustical path from the noise canceling circuit through the transducer. The anti-noise signal is adaptively generated to minimize the ambient audio sounds at the error microphone. A processing circuit that performs the adaptive noise canceling (ANC) function also filters one or both of the reference and/or error microphone signals, to bias the adaptation of the adaptive filter in one or more frequency regions to alter a degree of the minimization of the ambient audio sounds at the error microphone.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: April 2, 2019
    Assignee: CIRRUS LOGIC, INC.
    Inventors: Nitin Kwatra, Ali Abdollahzadeh Milani, Jeffrey Alderson
  • Patent number: 9955250
    Abstract: A personal audio device including multiple output transducers for reproducing different frequency bands of a source audio signal, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal for each of the transducers from at least one microphone signal that measures the ambient audio to generate anti-noise signals. The anti-noise signals are generated by separate adaptive filters such that the anti-noise signals cause substantial cancelation of the ambient audio at their corresponding transducers. The use of separate adaptive filters provides low-latency operation, since a crossover is not needed to split the anti-noise into the appropriate frequency bands. The adaptive filters can be implemented or biased to generate anti-noise only in the frequency band corresponding to the particular adaptive filter. The anti-noise signals are combined with source audio of the appropriate frequency band to provide outputs for the corresponding transducers.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: April 24, 2018
    Assignee: CIRRUS LOGIC, INC.
    Inventors: Jon D. Hendrix, Jeffrey Alderson, Ali Abdollahzadeh Milani, Dayong Zhou, Yang Lu
  • Publication number: 20180040315
    Abstract: A personal audio device, such as a wireless telephone, includes noise canceling that adaptively generates an anti-noise signal from a reference microphone signal and injects the anti-noise signal into the speaker or other transducer output to cause cancellation of ambient audio sounds. An error microphone is provided proximate the speaker to measure the output of the transducer in order to control the adaptation of the anti-noise signal and to estimate an electro-acoustical path from the noise canceling circuit through the transducer. The anti-noise signal is adaptively generated to minimize the ambient audio sounds at the error microphone. A processing circuit that performs the adaptive noise canceling (ANC) function also filters one or both of the reference and/or error microphone signals, to bias the adaptation of the adaptive filter in one or more frequency regions to alter a degree of the minimization of the ambient audio sounds at the error microphone.
    Type: Application
    Filed: October 18, 2017
    Publication date: February 8, 2018
    Inventors: Nitin Kwatra, Ali Abdollahzadeh Milani, Jeffrey Alderson
  • Patent number: 9824677
    Abstract: A personal audio device, such as a wireless telephone, includes noise canceling that adaptively generates an anti-noise signal from a reference microphone signal and injects the anti-noise signal into the speaker or other transducer output to cause cancellation of ambient audio sounds. An error microphone is provided proximate the speaker to measure the output of the transducer in order to control the adaptation of the anti-noise signal and to estimate an electro-acoustical path from the noise canceling circuit through the transducer. The anti-noise signal is adaptively generated to minimize the ambient audio sounds at the error microphone. A processing circuit that performs the adaptive noise canceling (ANC) function also filters one or both of the reference and/or error microphone signals, to bias the adaptation of the adaptive filter in one or more frequency regions to alter a degree of the minimization of the ambient audio sounds at the error microphone.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: November 21, 2017
    Assignee: CIRRUS LOGIC, INC.
    Inventors: Nitin Kwatra, Ali Abdollahzadeh Milani, Jeffrey Alderson
  • Patent number: 9773490
    Abstract: A personal audio device, such as a wireless telephone, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal from a reference microphone signal and injects the anti-noise signal into the speaker or other transducer output to cause cancellation of ambient audio sounds. An error microphone is also provided proximate to the speaker to provide an error signal indicative of the effectiveness of the noise cancellation. A secondary path estimating adaptive filter is used to estimate the electro-acoustical path from the noise canceling circuit through the transducer so that source audio can be removed from the error signal. A level of the source audio with respect to the ambient audio is determined to determine whether the system may generate erroneous anti-noise and/or become unstable.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: September 26, 2017
    Assignee: CIRRUS LOGIC, INC.
    Inventors: Jeffrey Alderson, Jon D. Hendrix, Dayong Zhou, Antonio John Miller, Chin Yong, Gautham Devendra Kamath
  • Patent number: 9773493
    Abstract: A personal audio device, such as a wireless telephone, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal from an output of a microphone that measures ambient audio. The anti-noise signal is combined with source audio to provide an output for a speaker. The anti-noise signal causes cancellation of ambient audio sounds that appear at the microphone. A processing circuit estimates a level of background noise from the microphone output and sets a power conservation mode of the personal audio device in response to detecting that the background noise level is lower than a predetermined threshold.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: September 26, 2017
    Assignee: CIRRUS LOGIC, INC.
    Inventors: Yang Lu, Dayong Zhou, Jon D. Hendrix, Jeffrey Alderson
  • Patent number: 9721556
    Abstract: An adaptive noise canceling (ANC) circuit adaptively generates an anti-noise signal from a reference microphone signal that is injected into the speaker or other transducer output to cause cancellation of ambient audio sounds. An error microphone proximate the speaker provides an error signal. A secondary path estimating adaptive filter estimates the electro-acoustical path from the noise canceling circuit through the transducer so that source audio can be removed from the error signal. Tones in the source audio, such as remote ringtones, present in downlink audio during initiation of a telephone call, are detected by a tone detector using accumulated tone persistence and non-silence hangover counting, and adaptation of the secondary path estimating adaptive filter is halted to prevent adapting to the tones. Adaptation of the adaptive filters is then sequenced so any disruption of the secondary path adaptive filter response is removed before allowing the anti-noise generating filter to adapt.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: August 1, 2017
    Assignee: CIRRUS LOGIC, INC.
    Inventors: Dayong Zhou, Yang Lu, Jon D. Hendrix, Jeffrey Alderson, Antonio John Miller, Chin Yong, Gautham Devendra Kamath
  • Patent number: 9711130
    Abstract: A personal audio device, such as a wireless telephone, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal from a reference microphone signal that measures the ambient audio and an error microphone signal that measures the output of an output transducer plus any ambient audio at that location and injects the anti-noise signal at the transducer output to cause cancellation of ambient audio sounds. A processing circuit uses the reference and error microphone to generate the anti-noise signal, which can be generated by an adaptive filter operating at a multiple of the ANC coefficient update rate. Downlink audio can be combined with the high data rate anti-noise signal by interpolation. High-pass filters in the control paths reduce DC offset in the ANC circuits, and ANC coefficient adaptation can be halted when downlink audio is not detected.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: July 18, 2017
    Assignee: CIRRUS LOGIC, INC.
    Inventors: Jon D. Hendrix, Gautham Devendra Kamath, Nitin Kwatra, Ali Abdollahzadeh Milani, Jeffrey Alderson
  • Patent number: 9633646
    Abstract: A personal audio device, such as a wireless telephone, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal from a reference microphone signal and injects the anti-noise signal into the speaker or other transducer output to cause cancellation of ambient audio sounds. An error microphone is also provided proximate the speaker to measure the ambient sounds and transducer output near the transducer, thus providing an indication of the effectiveness of the noise canceling. A processing circuit uses the reference and/or error microphone, optionally along with a microphone provided for capturing near-end speech, to determine whether the ANC circuit is incorrectly adapting or may incorrectly adapt to the instant acoustic environment and/or whether the anti-noise signal may be incorrect and/or disruptive and then take action in the processing circuit to prevent or remedy such conditions.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: April 25, 2017
    Assignee: CIRRUS LOGIC, INC
    Inventors: Jon D. Hendrix, Ali Abdollahzadeh Milani, Nitin Kwatra, Dayong Zhou, Yang Lu, Jeffrey Alderson
  • Patent number: 9532139
    Abstract: A frequency domain method and system for online self-calibrating microphone frequency amplitude response based on noise floor (minima) tracking are disclosed. A cellular telephone or other system with dual microphones may self-calibrate itself on-the-fly. The system selects one of the microphones as a reference and calibrates the frequency response of the two microphones using the first microphone as a reference, so that they have a matched frequency amplitude response. To achieve this on-the-fly calibration, the system uses background noise for calibration purposes. The signal power spectra of the noise minima at the two microphones is used to calibrate the respective microphone frequency response. The system may then adapt the frequency amplitude responses of the two microphones so that the power spectral density from each microphone matches the other, and the system is then calibrated.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: December 27, 2016
    Assignee: Cirrus Logic, Inc.
    Inventors: Yang Lu, Dayong Zhou, Jon D. Hendrix, Jeffrey Alderson
  • Patent number: 9502020
    Abstract: An adaptive noise canceling (ANC) circuit adaptively generates an anti-noise signal that is injected into the speaker or other transducer output to cause cancellation of ambient audio sounds. At least one microphone provides an error signal indicative of the noise cancellation at the transducer, and the adaptive filter is adapted to minimize the error signal. In order to prevent improper adaptation or instabilities in one or both of the adaptive filters, spikes are detected in the error signal by comparing the error signal or its rate of change to a threshold. Therefore, if the magnitude of the coefficient error is greater than a threshold value for an update, the update is skipped. Alternatively the step size of the updates may be reduced. Similar criteria can be applied to a filter modeling the secondary path, based on detection applied to both the source audio and the error signal.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: November 22, 2016
    Assignee: CIRRUS LOGIC, INC.
    Inventors: Ali Abdollahzadeh Milani, Jeffrey Alderson, Gautham Devendra Kamath, Yang Lu
  • Publication number: 20160316291
    Abstract: A personal audio device including multiple output transducers for reproducing different frequency bands of a source audio signal, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal for each of the transducers from at least one microphone signal that measures the ambient audio to generate anti-noise signals. The anti-noise signals are generated by separate adaptive filters such that the anti-noise signals cause substantial cancelation of the ambient audio at their corresponding transducers. The use of separate adaptive filters provides low-latency operation, since a crossover is not needed to split the anti-noise into the appropriate frequency bands. The adaptive filters can be implemented or biased to generate anti-noise only in the frequency band corresponding to the particular adaptive filter. The anti-noise signals are combined with source audio of the appropriate frequency band to provide outputs for the corresponding transducers.
    Type: Application
    Filed: July 6, 2016
    Publication date: October 27, 2016
    Inventors: Jon D. Hendrix, Jeffrey Alderson, Ali Abdollahzadeh Milani, Dayong Zhou, Yang Lu
  • Publication number: 20160232887
    Abstract: A personal audio device, such as a wireless telephone, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal from a reference microphone signal that measures the ambient audio and an error microphone signal that measures the output of an output transducer plus any ambient audio at that location and injects the anti-noise signal at the transducer output to cause cancellation of ambient audio sounds. A processing circuit uses the reference and error microphone to generate the anti-noise signal, which can be generated by an adaptive filter operating at a multiple of the ANC coefficient update rate. Downlink audio can be combined with the high data rate anti-noise signal by interpolation. High-pass filters in the control paths reduce DC offset in the ANC circuits, and ANC coefficient adaptation can be halted when downlink audio is not detected.
    Type: Application
    Filed: April 15, 2016
    Publication date: August 11, 2016
    Inventors: Jon D. Hendrix, Gautham Devendra Kamath, Nitin Kwatra, Ali Abdollahzadeh Milani, Jeffrey Alderson
  • Patent number: 9414150
    Abstract: A personal audio device including multiple output transducers for reproducing different frequency bands of a source audio signal, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal for each of the transducers from at least one microphone signal that measures the ambient audio to generate anti-noise signals. The anti-noise signals are generated by separate adaptive filters such that the anti-noise signals cause substantial cancellation of the ambient audio at their corresponding transducers. The use of separate adaptive filters provides low-latency operation, since a crossover is not needed to split the anti-noise into the appropriate frequency bands. The adaptive filters can be implemented or biased to generate anti-noise only in the frequency band corresponding to the particular adaptive filter. The anti-noise signals are combined with source audio of the appropriate frequency band to provide outputs for the corresponding transducers.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: August 9, 2016
    Assignee: CIRRUS LOGIC, INC.
    Inventors: Jon D. Hendrix, Jeffrey Alderson, Ali Abdollahzadeh Milani, Dayong Zhou, Yang Lu
  • Publication number: 20160196816
    Abstract: An adaptive noise canceling (ANC) circuit adaptively generates an anti-noise signal from a reference microphone signal that is injected into the speaker or other transducer output to cause cancellation of ambient audio sounds. An error microphone proximate the speaker provides an error signal. A secondary path estimating adaptive filter estimates the electro-acoustical path from the noise canceling circuit through the transducer so that source audio can be removed from the error signal. Tones in the source audio, such as remote ringtones, present in downlink audio during initiation of a telephone call, are detected by a tone detector using accumulated tone persistence and non-silence hangover counting, and adaptation of the secondary path estimating adaptive filter is halted to prevent adapting to the tones. Adaptation of the adaptive filters is then sequenced so any disruption of the secondary path adaptive filter response is removed before allowing the anti-noise generating filter to adapt.
    Type: Application
    Filed: March 15, 2016
    Publication date: July 7, 2016
    Inventors: Dayong Zhou, Yang Lu, Jon D. Hendrix, Jeffrey Alderson, Antonio John Miller, Chin Yong, Gautham Devendra Kamath