Patents by Inventor Jeffrey Camacho Bunquin

Jeffrey Camacho Bunquin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10640435
    Abstract: A multimetallic catalyst having a substrate, intermediate layer and catalyst layer. The catalyst exhibits selectivity greater than 90% and a conversion rate of greater than 30%.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: May 5, 2020
    Assignee: UChicago Argonne, LLC
    Inventors: Peter C. Stair, Jeffrey Camacho Bunquin, Christopher L. Marshall, Adam S. Hock
  • Publication number: 20170333878
    Abstract: A multimetallic catalyst having a substrate, intermediate layer and catalyst layer. The catalyst exhibits selectivity greater than 90% and a conversion rate of greater than 30%.
    Type: Application
    Filed: May 17, 2016
    Publication date: November 23, 2017
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Peter C. Stair, Jeffrey Camacho Bunquin, Christopher L. Marshall, Adam S. Hock
  • Patent number: 9120984
    Abstract: Phosphoranimide-metal catalysts and their role in hydrodesulfurization are disclosed. The catalysts comprise of first row transition metals such as nickel, cobalt and iron. The catalysts have a metal to anionic phosphoranimide ratio of 1:1 and catalyze hydrodesulfurization of a range of sulfur-containing organic compounds under lower temperature and pressure conditions than those commonly used in industrial hydrodesulfurization.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: September 1, 2015
    Assignee: Governors of the University of Alberta
    Inventors: Jeffrey Camacho Bunquin, Jeffrey Mark Stryker
  • Patent number: 9120741
    Abstract: Phosphoranimide-metal catalysts and their role in hydrogenation and hydrosilylation are disclosed. The catalysts comprise first row transition metals such as nickel, cobalt or iron. The catalysts have a metal to anionic phosphoranimide ratio of 1:1. This disclosure presents a process for catalytic hydrogenation and hydrosilylation of a range of unsaturated organic compounds under lower temperature and pressure conditions than conditions associated with industrial hydrogenation and hydrosilylation.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: September 1, 2015
    Assignee: Governors of the University of Alberta
    Inventors: Jeffrey Camacho Bunquin, Jeffrey Mark Stryker
  • Patent number: 9051229
    Abstract: Phosphoranimide-metal catalysts and their role in C—O bond hydrogenolysis and hydrodeoxygenation (HDO) are disclosed. The catalysts comprise of first row transition metals such as nickel, cobalt and iron. The catalysts have a metal to anionic phosphoranimide ratio of 1:1 and catalyze C—O bond hydrogenolyses of a range of oxygen-containing organic compounds under lower temperature and pressure conditions than those commonly used in industrial hydrodeoxygenation.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: June 9, 2015
    Assignee: Governors of the University of Alberta
    Inventors: Jeffrey Camacho Bunquin, Jeffrey Mark Stryker
  • Patent number: 8901334
    Abstract: Phosphoranimide-metal catalysts are disclosed. The catalysts comprise first row transition metals such as nickel, cobalt or iron. The hydrocarbon-soluble catalysts have a metal to anionic phosphoranimide ratio of 1:1, have no inactive bulk phase and no dative ancillary ligands, and are active for a range of commercially important reductive transformations. A method of synthesis of these catalysts by reduction of a precursor of these catalysts is also disclosed.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: December 2, 2014
    Assignee: Governors of the University of Alberta
    Inventors: Jeffrey Camacho Bunquin, Jeffrey Mark Stryker
  • Publication number: 20140174989
    Abstract: Phosphoranimide-metal catalysts and their role in hydrodesulfurization are disclosed. The catalysts comprise of first row transition metals such as nickel, cobalt and iron. The catalysts have a metal to anionic phosphoranimide ratio of 1:1 and catalyze hydrodesulfurization of a range of sulfur-containing organic compounds under lower temperature and pressure conditions than those commonly used in industrial hydrodesulfurization.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Inventors: Jeffrey Camacho Bunquin, Jeffrey Mark STRYKER
  • Publication number: 20140179954
    Abstract: Phosphoranimide-metal catalysts and their role in C—O bond hydrogenolysis and hydrodeoxygenation (HDO) are disclosed. The catalysts comprise of first row transition metals such as nickel, cobalt and iron. The catalysts have a metal to anionic phosphoranimide ratio of 1:1 and catalyze C—O bond hydrogenolyses of a range of oxygen-containing organic compounds under lower temperature and pressure conditions than those commonly used in industrial hydrodeoxygenation.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: GOVERNORS OF THE UNIVERSITY OF ALBERTA
    Inventors: Jeffrey Camacho Bunquin, Jeffrey Mark Stryker
  • Publication number: 20140179946
    Abstract: Phosphoranimide-metal catalysts and their role in hydrogenation and hydrosilylation are disclosed. The catalysts comprise first row transition metals such as nickel, cobalt or iron. The catalysts have a metal to anionic phosphoranimide ratio of 1:1. This disclosure presents a process for catalytic hydrogenation and hydrosilylation of a range of unsaturated organic compounds under lower temperature and pressure conditions than conditions associated with industrial hydrogenation and hydrosilylation.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: GOVERNORS OF THE UNIVERSITY OF ALBERTA
    Inventors: Jeffrey Camacho BUNQUIN, Jeffrey Mark STRYKER