Patents by Inventor Jeffrey E. Koelling

Jeffrey E. Koelling has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11967373
    Abstract: The present disclosure includes apparatuses, methods, and systems for pre-decoder circuitry. An embodiment includes a memory array including a plurality of memory cells, decoder circuitry coupled to the memory array, wherein the decoder circuitry comprises a p-type transistor having a first gate, a first n-type transistor having a second gate, and a second n-type transistor having a third gate, and pre-decoder circuitry configured to provide a bias condition for the first gate, the second gate, and the third gate to provide a selection signal to one of the plurality of memory cells, wherein the bias condition comprises zero volts for the first gate, the second gate, and the third gate for a positive configuration for the memory cells and a negative voltage for the third gate and zero volts for the first gate and the second gate for a negative configuration for the memory cells.
    Type: Grant
    Filed: June 2, 2022
    Date of Patent: April 23, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Vijayakrishna J. Vankayala, Hari Giduturi, Jeffrey E. Koelling, Mingdong Cui, Ramachandra Rao Jogu
  • Publication number: 20230395145
    Abstract: The present disclosure includes apparatuses, methods, and systems for pre-decoder circuitry. An embodiment includes a memory array including a plurality of memory cells, decoder circuitry coupled to the memory array, wherein the decoder circuitry comprises a p-type transistor having a first gate, a first n-type transistor having a second gate, and a second n-type transistor having a third gate, and pre-decoder circuitry configured to provide a bias condition for the first gate, the second gate, and the third gate to provide a selection signal to one of the plurality of memory cells, wherein the bias condition comprises zero volts for the first gate, the second gate, and the third gate for a positive configuration for the memory cells and a negative voltage for the third gate and zero volts for the first gate and the second gate for a negative configuration for the memory cells.
    Type: Application
    Filed: June 2, 2022
    Publication date: December 7, 2023
    Inventors: Vijayakrishna J. Vankayala, Hari Giduturi, Jeffrey E. Koelling, Mingdong Cui, Ramachandra Rao Jogu
  • Publication number: 20220399055
    Abstract: Methods, systems, and devices for decoder architecture for memory device are described. An apparatus includes a memory array having a memory cell and an access line coupled with the cell and a decoder having a first stage and a second stage. The decoder supplying a first voltage during a first access operation and a second voltage during a second access operation to the access line. The second stage of the decoder includes a first transistor that supplies the first voltage based on a third voltage at the source of the first transistor exceeding a fourth voltage at a gate of the first transistor and a first threshold voltage. The second stage includes a second transistor that supplies the second voltage based on a fifth voltage at a gate of the second transistor exceeding a sixth voltage at the source of the second transistor and a second threshold voltage.
    Type: Application
    Filed: July 13, 2022
    Publication date: December 15, 2022
    Inventors: Ferdinando Bedeschi, Jeffrey E. Koelling, Hari Giduturi, Riccardo Muzzetto, Corrado Villa
  • Patent number: 11398276
    Abstract: Methods, systems, and devices for decoder architecture for memory device are described. An apparatus includes a memory array having a memory cell and an access line coupled with the cell and a decoder having a first stage and a second stage. The decoder supplying a first voltage during a first access operation and a second voltage during a second access operation to the access line. The second stage of the decoder includes a first transistor that supplies the first voltage based on a third voltage at the source of the first transistor exceeding a fourth voltage at a gate of the first transistor and a first threshold voltage. The second stage includes a second transistor that supplies the second voltage based on a fifth voltage at a gate of the second transistor exceeding a sixth voltage at the source of the second transistor and a second threshold voltage.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: July 26, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Ferdinando Bedeschi, Jeffrey E. Koelling, Hari Giduturi, Riccardo Muzzetto, Corrado Villa
  • Publication number: 20220172778
    Abstract: Methods, systems, and devices for decoder architecture for memory device are described. An apparatus includes a memory array having a memory cell and an access line coupled with the cell and a decoder having a first stage and a second stage. The decoder supplying a first voltage during a first access operation and a second voltage during a second access operation to the access line. The second stage of the decoder includes a first transistor that supplies the first voltage based on a third voltage at the source of the first transistor exceeding a fourth voltage at a gate of the first transistor and a first threshold voltage. The second stage includes a second transistor that supplies the second voltage based on a fifth voltage at a gate of the second transistor exceeding a sixth voltage at the source of the second transistor and a second threshold voltage.
    Type: Application
    Filed: December 1, 2020
    Publication date: June 2, 2022
    Inventors: Ferdinando Bedeschi, Jeffrey E. Koelling, Hari Giduturi, Riccardo Muzzetto, Corrado Villa
  • Patent number: 11217295
    Abstract: Apparatuses and methods for address detection are disclosed herein. An example apparatus it an address filter and an address tracking circuit. The address filter may be configured to receive a first address and to determine whether the first address matches an address of a plurality of addresses associated with the address filter. The address tracking circuit may be coupled to the address filter and configured to store the first address responsive to a determination that the first address matches an address of the plurality of addresses associated with the address filter. The address tracking circuit may further be configured to receive a second address and to change a count associated with the first address based on the second address matching the first address. The address tracking circuit may be configured to selectively provide the first address responsive to the count.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: January 4, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Kallol Mazumder, Jason M. Brown, Derek R. May, Jeffrey E. Koelling, Roger D. Norwood
  • Patent number: 10608621
    Abstract: The present disclosure relates generally to improved systems and methods for control of one or more timing signals in a memory device. More specifically, the present disclosure relates to configurable duty cycle correction at one or more DQ pins (e.g., data input/output (I/O) pins) of the memory device. For example, the memory device may include a configurable phase splitter and/or selective capacitive loading circuitry implemented to adjust the duty cycle of a timing signal at one or more DQ pins during and/or after manufacture of the memory device. Accordingly, the memory device may include increased flexibility and granularity of control over the one or more timing signals.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: March 31, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Gary L. Howe, Jeffrey E. Koelling
  • Publication number: 20200042423
    Abstract: Apparatuses and methods for address detection are disclosed herein. An example apparatus it an address filter and an address tracking circuit. The address filter may be configured to receive a first address and to determine whether the first address matches an address of a plurality of addresses associated with the address filter. The address tracking circuit may be coupled to the address filter and configured to store the first address responsive to a determination that the first address matches an address of the plurality of addresses associated with the address filter. The address tracking circuit may further be configured to receive a second address and to change a count associated with the first address based on the second address matching the first address. The address tracking circuit may be configured to selectively provide the first address responsive to the count.
    Type: Application
    Filed: October 11, 2019
    Publication date: February 6, 2020
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Kallol Mazumder, Jason M. Brown, Derek R. May, Jeffrey E. Koelling, Roger D. Norwood
  • Publication number: 20200044640
    Abstract: The present disclosure relates generally to improved systems and methods for control of one or more timing signals in a memory device. More specifically, the present disclosure relates to configurable duty cycle correction at one or more DQ pins (e.g., data input/output (I/O) pins) of the memory device. For example, the memory device may include a configurable phase splitter and/or selective capacitive loading circuitry implemented to adjust the duty cycle of a timing signal at one or more DQ pins during and/or after manufacture of the memory device. Accordingly, the memory device may include increased flexibility and granularity of control over the one or more timing signals.
    Type: Application
    Filed: July 31, 2018
    Publication date: February 6, 2020
    Inventors: Gary L. Howe, Jeffrey E. Koelling
  • Patent number: 10534686
    Abstract: Apparatuses and methods for address detection are disclosed herein. An example apparatus includes an address filter and an address tracking circuit. The address filter may be configured to receive a first address and to determine whether the first address matches an address of a plurality of addresses associated with the address filter. The address tracking circuit may be coupled to the address filter and configured to store the first address responsive to a determination that the first address matches an address of the plurality of addresses associated with the address filter. The address tracking circuit may further be configured to receive a second address and to change a count associated with the first address based on the second address matching the first address. The address tracking circuit may be configured to selectively provide the first address responsive to the count.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: January 14, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Kallol Mazumder, Jason M. Brown, Derek R. May, Jeffrey E. Koelling, Roger D. Norwood
  • Publication number: 20150213872
    Abstract: Apparatuses and methods for address detection are disclosed herein. An example apparatus includes an address filter and an address tracking circuit. The address filter may be configured to receive a first address and to determine whether the first address matches an address of a plurality of addresses associated with the address filter. The address tracking circuit may be coupled to the address filter and configured to store the first address responsive to a determination that the first address matches an address of the plurality of addresses associated with the address filter. The address tracking circuit may further be configured to receive a second address and to change a count associated with the first address based on the second address matching the first address. The address tracking circuit may be configured to selectively provide the first address responsive to the count.
    Type: Application
    Filed: January 30, 2014
    Publication date: July 30, 2015
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Kallol Mazumder, Jason M. Brown, Derek R. May, Jeffrey E. Koelling, Roger D. Norwood
  • Patent number: 7323727
    Abstract: A method and apparatus for providing a meshed power and signal bus system on an array type integrated circuit that minimizes the size of the circuit. In a departure from the art, through-holes for the mesh system are placed in the cell array, as well as the peripheral circuits. The power and signal buses of the mesh system run in both vertical and horizontal directions across the array such that all the vertical buses lie in one metal layer, and all the horizontal buses lie in another metal layer. The buses of one layer are connected to the appropriate bus(es) of the other layer using through-holes located in the array. Once connected, the buses extend to the appropriate sense amplifier drivers. The method and apparatus are facilitated by an improved subdecoder circuit implementing a hierarchical word line structure.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: January 29, 2008
    Assignees: Hitachi, Ltd., Texas Instruments Incorporated
    Inventors: Goro Kitsukawa, Takesada Akiba, Hiroshi Otori, William R. McKee, Jeffrey E. Koelling, Troy H. Herndon
  • Patent number: 7211842
    Abstract: A method and apparatus for providing a meshed power and signal bus system on an array type integrated circuit that minimizes the size of the circuit. In a departure from the art, through-holes for the mesh system are placed in the cell array, as well as the peripheral circuits. The power and signal buses of the mesh system run in both vertical and horizontal directions across the array such that all the vertical buses lie in one metal layer, and all the horizontal buses lie in another metal layer. The buses of one layer are connected to the appropriate bus(es) of the other layer using through-holes located in the array. Once connected, the buses extend to the appropriate sense amplifier drivers. The method and apparatus are facilitated by an improved subdecoder circuit implementing a hierarchical word line structure.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: May 1, 2007
    Assignees: Hitachi, Ltd., Texas Instruments Incorporated
    Inventors: Goro Kitsukawa, Takesada Akiba, Hiroshi Otori, William R. McKee, Jeffrey E. Koelling, Troy H. Herndon
  • Patent number: 6967371
    Abstract: A method and apparatus for providing a meshed power and signal bus system on an array type integrated circuit that minimizes the size of the circuit. In a departure from the art, through-holes for the mesh system are placed in the cell array, as well as the peripheral circuits. The power and signal buses of the mesh system run in both vertical and horizontal directions across the array such that all the vertical buses lie in one metal layer, and all the horizontal buses lie in another metal layer. The buses of one layer are connected to the appropriate bus(es) of the other layer using through-holes located in the array. Once connected, the buses extend to the appropriate sense amplifier drivers. The method and apparatus are facilitated by an improved subdecoder circuit implementing a hierarchical word line structure.
    Type: Grant
    Filed: September 20, 2004
    Date of Patent: November 22, 2005
    Assignees: Hitachi, Ltd., Texas Instruments Incorporated
    Inventors: Goro Kitsukawa, Takesada Akiba, Hiroshi Otori, William R. McKee, Jeffrey E. Koelling, Troy H. Herndon
  • Patent number: 6831317
    Abstract: A method and apparatus for providing a meshed power and signal bus system on an array type integrated circuit that minimizes the size of the circuit. In a departure from the art, through-holes for the mesh system are placed in the cell array, as well as the peripheral circuits. The power and signal buses of the mesh system run in both vertical and horizontal directions across the array such that all the vertical buses lie in one metal layer, and all the horizontal buses lie in another metal layer. The buses of one layer are connected to the appropriate bus(es) of the other layer using through-holes located in the array. Once connected, the buses extend to the appropriate sense amplifier drivers. The method and apparatus are facilitated by an improved subdecoder circuit implementing a hierarchical word line structure.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: December 14, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Goro Kitsukawa, Takesada Akiba, Hiroshi Otori, William R. McKee, Jeffrey E. Koelling, Troy H. Herndon
  • Patent number: 6815742
    Abstract: A method and apparatus for providing a meshed power and signal bus system on an array type integrated circuit that minimizes the size of the circuit. In a departure from the art, through-holes for the mesh system are placed in the cell array, as well as the peripheral circuits. The power and signal buses of the mesh system run in both vertical and horizontal directions across the array such that all the vertical buses lie in one metal layer, and all the horizontal buses lie in another metal layer. The buses of one layer are connected to the appropriate bus(es) of the other layer using through-holes located in the array. Once connected, the buses extend to the appropriate sense amplifier drivers. The method and apparatus are facilitated by an improved subdecoder circuit implementing a hierarchical word line structure.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: November 9, 2004
    Assignees: Hitachi, Ltd., Texas Instruments Incorporated
    Inventors: Goro Kitsukawa, Takesada Akiba, Hiroshi Otori, William R. McKee, Jeffrey E. Koelling, Troy H. Herndon
  • Publication number: 20040129974
    Abstract: A method and apparatus for providing a meshed power and signal bus system on an array type integrated circuit that minimizes the size of the circuit. In a departure from the art, through-holes for the mesh system are placed in the cell array, as well as the peripheral circuits. The power and signal buses of the mesh system run in both vertical and horizontal directions across the array such that all the vertical buses lie in one metal layer, and all the horizontal buses lie in another metal layer. The buses of one layer are connected to the appropriate bus(es) of the other layer using through-holes located in the array. Once connected, the buses extend to the appropriate sense amplifier drivers. The method and apparatus are facilitated by an improved subdecoder circuit implementing a hierarchical word line structure.
    Type: Application
    Filed: December 5, 2003
    Publication date: July 8, 2004
    Applicants: Hitachi, Ltd., Texas Instruments Incorporated
    Inventors: Goro Kitsukawa, Takesada Akiba, Hiroshi Otori, William R. McKee, Jeffrey E. Koelling, Troy H. Herndon
  • Patent number: 6624685
    Abstract: A circuit is designed with a first transistor (661) having a current path coupled between a supply terminal (32) and a first output terminal (665). A second transistor has a current path coupled between the first output terminal and a reference terminal. The current path of the second transistor current path has substantially the same width and length as the first transistor current path. A first comparator circuit (679, 685) has first (668) and second (23) input terminals and a second output terminal (681). The first input terminal is coupled to the first output terminal. The first comparator circuit produces a control signal in response to a voltage between the first and second input terminals. A generator circuit (80) receives the control signal and produces an output voltage at the supply terminal.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: September 23, 2003
    Assignee: Texas Instruments Incorporated
    Inventors: Albert Shih, Jeffrey E. Koelling
  • Publication number: 20030067018
    Abstract: A method and apparatus for providing a meshed power and signal bus system on an array type integrated circuit that minimizes the size of the circuit. In a departure from the art, through-holes for the mesh system are placed in the cell array, as well as the peripheral circuits. The power and signal buses of the mesh system run in both vertical and horizontal directions across the array such that all the vertical buses lie in one metal layer, and all the horizontal buses lie in another metal layer. The buses of one layer are connected to the appropriate bus(es) of the other layer using through-holes located in the array. Once connected, the buses extend to the appropriate sense amplifier drivers. The method and apparatus are facilitated by an improved subdecoder circuit implementing a hierarchical word line structure.
    Type: Application
    Filed: December 10, 2002
    Publication date: April 10, 2003
    Applicant: Hitachi, Ltd.
    Inventors: Goro Kitsukawa, Takesada Akiba, Hiroshi Otori, William R. McKee, Jeffrey E. Koelling, Troy H. Herndon
  • Patent number: 6512257
    Abstract: A method and apparatus for providing a meshed power and signal bus system on an array type integrated circuit that minimizes the size of the circuit. In a departure from the art, through-holes for the mesh system are placed in the cell array, as well as the peripheral circuits. The power and signal buses of the mesh system run in both vertical and horizontal directions across the array such that all the vertical buses lie in one metal layer, and all the horizontal buses lie in another metal layer. The buses of one layer are connected to the appropriate bus(es) of the other layer using through-holes located in the array. Once connected, the buses extend to the appropriate sense amplifier drivers. The method and apparatus are facilitated by an improved subdecoder circuit implementing a hierarchical word line structure.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: January 28, 2003
    Assignees: Hitachi, Inc., Texas Instruments Incorporated
    Inventors: Goro Kitsukawa, Takesada Akiba, Hiroshi Otori, William R. McKee, Jeffrey E. Koelling, Troy H. Herndon