Patents by Inventor Jeffrey G. Nelson

Jeffrey G. Nelson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9991060
    Abstract: An energy storage device having improved energy density performance may include an electrolyte having a salt concentration of about 0.6 moles/L (M) to about 0.95M. A final energy storage device product having a total mass of electrolyte that is at least 100% of a saturation quantity of electrolyte sufficient to fully saturate one or more electrode(s) and separator(s) of the device, and below a threshold quantity above the saturation quantity.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: June 5, 2018
    Assignee: Maxwell Technologies, Inc.
    Inventors: Jeffrey Bouchard, Doug Schafer, Priya Bendale, Jeffrey G. Nelson
  • Publication number: 20140368973
    Abstract: An energy storage device having improved energy density performance may include an electrolyte having a salt concentration of about 0.6 moles/L (M) to about 0.95M. A final energy storage device product having a total mass of electrolyte that is at least 100% of a saturation quantity of electrolyte sufficient to fully saturate one or more electrode(s) and separator(s) of the device, and below a threshold quantity above the saturation quantity.
    Type: Application
    Filed: June 12, 2014
    Publication date: December 18, 2014
    Inventors: Jeffrey Bouchard, Doug Schafer, Priya Bendale, Jeffrey G. Nelson
  • Patent number: 6279878
    Abstract: PLZT piezoelectric ceramics having the general formula (Pb1−xLax)(ZryTi1−y)1−(x/4)−zMa+4z/a O3 are fabricated in a hot forging process using PbO, TiO2, ZrO2, and La2O3 powders with Nb2O5 and Ta2O5 added to provide 2.0-3.0% Nb5+ (mole %) and 2.0-3.0% Ta+5 (mole %) as a dopant. ZrO2 and TiO2 powders are mixed at a molar ratio of y/(1−y), the preferred molar ratio being 55/45, calcined at approximately 1300° C.-1500° C., ball milled in acetone, and evaporated to a dry powder. The mixture of ZrO2 and TiO2 is then combined with PbO2, La2O3, Nb2O5 and Ta2O5 powders, and the new mixture is ball milled in acetone, evaporated to a dry powder, calcined at approximately 700°-850° C., and sifted to obtain a particle size of approximately 0.5-1.5 &mgr;m. The final Nb/Ta-doped PLZT powder is formed into the desired shape by cold pressing followed by sintering at approximately 1000° C.-1150° C. in oxygen.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: August 28, 2001
    Assignee: Rockwell Technologies, LLC
    Inventors: Jeffrey G. Nelson, Ratnakar R. Neurgaonkar
  • Patent number: 5780957
    Abstract: A piezoelectric moving linear motor consists of three piezoelectric actuators which are controlled relative to each other. One piezoelectric actuators causes two blocks to move away from each other in opposition to a spring force. The other two piezoelectric actuators selectively clamp a block to a guide shaft. By cyclically controlling the actuation of the three piezoelectric actuators, the motor is able to move the blocks axially along the guide shaft. Preferably, a vehicle component such as a window is fixed to one block and is caused to move along the guide shaft.
    Type: Grant
    Filed: November 12, 1996
    Date of Patent: July 14, 1998
    Assignee: Meritor Light Vehicle Systems, Inc.
    Inventors: John R. Oliver, Ratnakar R. Neurgaonkar, Jeffrey G. Nelson, Carlo Bertolini
  • Patent number: 5780956
    Abstract: A piezoelectric drive to provide a rotary force to a rotating element includes a pair of circumferentially spaced fingers. The fingers are selectively moved towards and away from the rotating element with piezoelectric actuators that expand and contract. An intermediate piezoelectric actuator moves the two fingers away from each other or allows them to be moved towards each other. A bias force acts in opposition to the intermediate piezoelectric actuator. By controlling the three piezoelectric actuators, the system rotates the rotating element. The system is preferably utilized for driving a vehicle component, and most preferably, a window for a vehicle. The inventive motor provides a low cost compact motor for driving vehicle components.
    Type: Grant
    Filed: November 12, 1996
    Date of Patent: July 14, 1998
    Assignee: Meritor Light Vehicle Systems, Inc.
    Inventors: John R. Oliver, Ramakar R. Neurgaonkar, Jeffrey G. Nelson, Carlo Bertolini
  • Patent number: 5607632
    Abstract: PLZT piezoelectric ceramics having the general formula (Pb.sub.1-x La.sub.x)(Zr.sub.y Ti.sub.1-y).sub.1-(x/4) O.sub.3 are fabricated in a hot forging process using PbO, TiO.sub.2, ZrO.sub.2, and La.sub.2 O.sub.3 powders as starting materials with Nb.sub.2 O.sub.5 added to provide Nb as a dopant. The ZrO.sub.2 and TiO.sub.2 powders are mixed at a molar ratio of y/(1-y), calcined at approximately 1300.degree.-1500.degree. C., ball milled in acetone, and evaporated to a dry powder. The mixture of ZrO.sub.2 and TiO.sub.2 is then combined with the PbO, La.sub.2 O.sub.3, and Nb.sub.2 O.sub.5 powders, and the new mixture is ball milled in acetone, evaporated to a dry powder, calcined at approximately 700.degree.-850.degree. C., and sifted to obtain a particle size of approximately 0.3-2.0 .mu.m. The final PLZT powder is formed into the desired shape by cold pressing followed by sintering at approximately 1000.degree.-1150.degree. C. in oxygen. The PLZT ceramic material is further densified to about 98.
    Type: Grant
    Filed: May 30, 1995
    Date of Patent: March 4, 1997
    Assignee: Rockwell International Corporation
    Inventors: Ratnakar R. Neurgaonkar, John R. Oliver, Jeffrey G. Nelson
  • Patent number: 5595677
    Abstract: PLZT piezoelectric ceramics having the general formula (Pb.sub.1-x La.sub.x)(Zr.sub.y Ti.sub.1-y).sub.1-(x/4) O.sub.3 are fabricated in a hot forging process using PbO, TiO.sub.2, ZrO.sub.2, and La.sub.2 O.sub.3 powders as starting materials with Nb.sub.2 O.sub.5 added to provide niobium (Nb) as a dopant. The ZrO.sub.2 and TiO.sub.2 powders are mixed at a molar ratio of y/(1-y), calcined at approximately 1300.degree.-1500.degree. C., ball milled in acetone, and evaporated to a dry powder. The mixture of ZrO.sub.2 and TiO.sub.2 is then combined with the PbO, La.sub.2 O.sub.3, and Nb.sub.2 O.sub.5 powders, and the new mixture is ball milled in acetone, evaporated to a dry powder, calcined at approximately 700.degree.-850.degree. C., and sifted to obtain a particle size of approximately 0.3-2.0 .mu.m. The final PLZT powder is formed into the desired shape by cold pressing followed by sintering at approximately 1000.degree.-1150.degree. C. in oxygen. The PLZT ceramic material is further densifted to about 98.
    Type: Grant
    Filed: May 30, 1995
    Date of Patent: January 21, 1997
    Assignee: Rockwell International Corporation
    Inventors: Ratnakar R. Neurgaonkar, John R. Oliver, Jeffrey G. Nelson