Patents by Inventor Jeffrey Grott

Jeffrey Grott has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210060509
    Abstract: A reforming reactor and process of using same in which a flow distributor distributes the process gas circumferentially to the reactive zone. Feed is injected into the reactor into a non-reactive zone. The non-reactive zone has two portions, a first portion receiving the feed, and a second portion receiving a purge gas. The purge gas will flow from the second portion to the first portion to prevent flow of the feed from the first portion to the second portion. The combined gas may be passed to a reaction zone for catalytic reforming. The first portion and the second portion may be separated by a flow distributor having two horizontal portions connected to opposite ends of a vertical portion.
    Type: Application
    Filed: August 26, 2019
    Publication date: March 4, 2021
    Inventors: John C. Maley, Ka Leung Lok, Jeffrey Grott, Amresh Kumar Tiwari
  • Patent number: 10933395
    Abstract: A reforming reactor and process of using same in which a flow distributor distributes the process gas circumferentially to the reactive zone. Feed is injected into the reactor into a non-reactive zone. The non-reactive zone has two portions, a first portion receiving the feed, and a second portion receiving a purge gas. The purge gas will flow from the second portion to the first portion to prevent flow of the feed from the first portion to the second portion. The combined gas may be passed to a reaction zone for catalytic reforming. The first portion and the second portion may be separated by a flow distributor having two horizontal portions connected to opposite ends of a vertical portion.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: March 2, 2021
    Assignee: UOP LLC
    Inventors: John C. Maley, Ka Leung Lok, Jeffrey Grott, Amresh Kumar Tiwari
  • Patent number: 10583412
    Abstract: A reforming reactor and process of using same in which the process gas is effectively and efficiently distributed through the non-reactive zone. The non-reactive zone has two portions, a first portion receiving a purge gas and having an outlet for an effluent from a reactive zone disposed beneath the non-reactive zone and a second portion receiving the feed and having an inlet. The inlet is located between the reaction zone and the outlet. A flow distributor separates the non-reactive zone into the two portions.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: March 10, 2020
    Assignee: UOP LLC
    Inventors: Jennifer Ozmen, Hadjira Iddir, Jeffrey Grott, Michael J. Vetter
  • Patent number: 10507462
    Abstract: A process is disclosed for an improved catalyst stripping process. The stripping vessel is divided into two zones. The first zone is a stripping zone where a substantial portion of the volatile hydrocarbons is removed at higher severity conditions. After the catalyst is stripped, the stripped catalyst moves to the lower cooling zone to be cooled at lower severity conditions. The flow rates, temperatures, pressures and the stripping and cooling zones are designed to ensure there is minimal volatile hydrocarbons on the catalyst by the time it leaves the stripping vessel. This design enables efficient stripping of volatile hydrocarbons at high severity conditions and eliminates these components from being stripped off elsewhere in the unit causing process and equipment issues.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: December 17, 2019
    Assignee: UOP LLC
    Inventors: Pelin Cox, William D. Schlueter, William Yanez, Jeffrey Grott
  • Patent number: 10052603
    Abstract: A radial flow reactor is described. It includes a vertically extending vessel, an outer conduit, and a central conduit. At least a portion of the outer conduit and the central conduit comprises a screen. A particle retaining space is defined by at least one of the vessel, the central conduit, and the outer conduit, and it communicates with the screen of the outer conduit and the central conduit. An inlet distribution ring is positioned on the outer conduit. The inlet distribution ring comprises a ring having at least one opening and at least one vertically extending riser tube. One end of the riser tube is sealed to the ring, and the other end is positioned inside the outer conduit.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: August 21, 2018
    Assignee: UOP LLC
    Inventors: Bryan J. Egolf, Jeffrey Grott, Emadoddin Abbasi, Michael J. Vetter, Ka Lok
  • Publication number: 20180050334
    Abstract: A process is disclosed for an improved catalyst stripping process. The stripping vessel is divided into two zones. The first zone is a stripping zone where a substantial portion of the volatile hydrocarbons is removed at higher severity conditions. After the catalyst is stripped, the stripped catalyst moves to the lower cooling zone to be cooled at lower severity conditions. The flow rates, temperatures, pressures and the stripping and cooling zones are designed to ensure there is minimal volatile hydrocarbons on the catalyst by the time it leaves the stripping vessel. This design enables efficient stripping of volatile hydrocarbons at high severity conditions and eliminates these components from being stripped off elsewhere in the unit causing process and equipment issues.
    Type: Application
    Filed: October 30, 2017
    Publication date: February 22, 2018
    Inventors: Pelin Cox, William D. Schlueter, William Yanez, Jeffrey Grott
  • Publication number: 20170320033
    Abstract: A radial flow reactor is described. It includes a vertically extending vessel, an outer conduit, and a central conduit. At least a portion of the outer conduit and the central conduit comprises a screen. A particle retaining space is defined by at least one of the vessel, the central conduit, and the outer conduit, and it communicates with the screen of the outer conduit and the central conduit. An inlet distribution ring is positioned on the outer conduit. The inlet distribution ring comprises a ring having at least one opening and at least one vertically extending riser tube. One end of the riser tube is sealed to the ring, and the other end is positioned inside the outer conduit.
    Type: Application
    Filed: April 28, 2017
    Publication date: November 9, 2017
    Inventors: Bryan J. Egolf, Jeffrey Grott, Emadoddin Abbasi, Michael J. Vetter, Ka Lok
  • Patent number: 9447901
    Abstract: A flow connector creates a fluid connection between a port in a wall of a reactor vessel and an axial flow path of the reactor vessel. The flow connector has a wall defining a flow path of the flow connector. The flow path terminates in a first end opening and a second end opening. The first end opening is configured to connect to the axial flow path of the reactor vessel, and the second end opening is configured to connect to the port in a wall of the reactor. The flow connector includes a passageway extending through the wall of the flow connector to provide access to the flow path of the flow connector. A cover is dimensioned for sealing the passageway. The passageway may be dimensioned such that a person may traverse the passageway to access the flow path of the flow connector.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: September 20, 2016
    Assignee: UOP LLC
    Inventors: Ka L. Lok, David A. Wegerer, Jeffrey Grott, William Yanez
  • Publication number: 20150224464
    Abstract: A system for radial flow contact of a reactant stream with catalyst particles includes a reactor vessel and a catalyst retainer disposed in the reactor vessel, the catalyst retainer including an inner particle retention device and an outer particle retention device, the inner particle retention device and the outer particle retention device being spaced apart to define a catalyst retaining space of the catalyst retainer, the inner particle retention device defining an axial flow path of the reactor vessel, the outer particle retention device and an inner surface of a wall of the reactor vessel defining an annular flow path of the reactor vessel. The system further includes an inlet nozzle positioned along a side of the reactor vessel and having an exit opening in fluid communication with the annular flow path of the vessel and an outlet nozzle in fluid communication with the axial flow path.
    Type: Application
    Filed: February 13, 2014
    Publication date: August 13, 2015
    Applicant: UOP LLC
    Inventors: Jeffrey Grott, Steven M. Poklop, Hadjira Iddir, David A. Wegerer
  • Publication number: 20150098862
    Abstract: A flow connector creates a fluid connection between a port in a wall of a reactor vessel and an axial flow path of the reactor vessel. The flow connector has a wall defining a flow path of the flow connector. The flow path terminates in a first end opening and a second end opening. The first end opening is configured to connect to the axial flow path of the reactor vessel, and the second end opening is configured to connect to the port in a wall of the reactor. The flow connector includes a passageway extending through the wall of the flow connector to provide access to the flow path of the flow connector. A cover is dimensioned for sealing the passageway. The passageway may be dimensioned such that a person may traverse the passageway to access the flow path of the flow connector.
    Type: Application
    Filed: October 7, 2013
    Publication date: April 9, 2015
    Applicant: UOP LLC
    Inventors: Ka L. Lok, David A. Wegerer, Jeffrey Grott, William Yanez
  • Patent number: 7271594
    Abstract: A system for processing signals includes a receiver assembly for receiving a signal. The signal has a sample component with a sample electric field and a sample polarization, and has a reference component with a reference electric field and a reference polarization. The receiver assembly includes an analyzer for polarimetrically processing the signal, including differencing the signal to generate a difference electric field proportional to the difference of the sample and reference electric fields. By polarimetrically differencing the signal, the analyzer reduces the magnitude of the common-mode signal at the difference signal receiver. The receiver assembly includes an electric-field detector for measuring the difference electric field such that the reduction in common-mode amplitude decreases the noise equivalent power of the electric-field detector.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: September 18, 2007
    Assignee: Goodrich Corporation
    Inventors: Rene Abreu, Jeffrey Grotts, Alexander J. Majewski
  • Publication number: 20060226348
    Abstract: A system for processing signals includes a receiver assembly for receiving a signal. The signal has a sample component with a sample electric field and a sample polarization, and has a reference component with a reference electric field and a reference polarization. The receiver assembly includes an analyzer for polarimetrically processing the signal, including differencing the signal to generate a difference electric field proportional to the difference of the sample and reference electric fields. By polarimetrically differencing the signal, the analyzer reduces the magnitude of the common-mode signal at the difference signal receiver. The receiver assembly includes an electric-field detector for measuring the difference electric field such that the reduction in common-mode amplitude decreases the noise equivalent power of the electric-field detector.
    Type: Application
    Filed: March 31, 2005
    Publication date: October 12, 2006
    Applicant: Goodrich Corporation
    Inventors: Rene Abreu, Jeffrey Grotts, Alexander Majewski